Experimental Study on Specimen and Grain Size Effects in Uniaxial Tension Test of Aluminum Foil

Abstract:

Article Preview

With the rapidly growing demand for the micro-thin-wall parts, the development of high accurate forming processes for very thin sheet or foil becomes more and more important. The aim of this study is to explore the effects of specimen width and grain size on tensile strength of aluminum alloy 3003 foil in uniaxial tension test. The problem was approached in two ways: firstly, by reduction of the specimen width, and secondly, by changing the grain size through annealing crystallization. The uniaxial tension tests were performed on an electronic universal material testing machine, in which a linear CCD based visual extensometer was used to measure deformation. The results show that the tensile strength decreases with decreasing specimen width or increasing surface-to-volume ratio. The tensile strength decreases with decreasing grain size for grain sizes larger than the specimen thickness.

Info:

Periodical:

Main Theme:

Edited by:

F. Micari, M. Geiger, J. Duflou, B. Shirvani, R. Clarke, R. Di Lorenzo and L. Fratini

Pages:

777-782

Citation:

J. Zhou et al., "Experimental Study on Specimen and Grain Size Effects in Uniaxial Tension Test of Aluminum Foil", Key Engineering Materials, Vol. 344, pp. 777-782, 2007

Online since:

July 2007

Export:

Price:

$38.00

[1] M. Geiger, M. Kleiner, R. Eckstein: Microforming. Annals of the CIRP Vol. 50(2) (2001) p.445.

DOI: https://doi.org/10.1016/s0007-8506(07)62991-6

[2] M. Geiger, M. Kleiner, M. Tolazzi: Metal forming ensures innovation and future in europe. Proceeding of the 8 th ICTP, (2005), p.447.

[3] T. A. Kals, R. Eckstein: Miniaturization in sheet metal working. Journal of Materials Processing Technology Vol. 103 (2000), p.95.

DOI: https://doi.org/10.1016/s0924-0136(00)00391-5

[4] Y. Saotome, A. Itoh, S. Amada: Supperplastic micro forming of double gear for milli-machines, Proceeding of the 4 th ICTP, (1993), p. (2000).

[5] S. Miyazaki, H. Fujita, H. Hiraka: Effect of specimen size on the flow stress of rod specimens of polycrystalline Cu-Al-Alloy, Scripta Met. Vol. 13 (6) (1979), p.447.

DOI: https://doi.org/10.1016/0036-9748(79)90067-x

[6] L. V. Rvaulea, A. M. Goijaerts, L. E. Govaert, F. P. T. Baaijens: Size effects in the processing of thin metal sheets. Journal of Materials Processing Technology. Vol. 115 (2001), p.44.

DOI: https://doi.org/10.1016/s0924-0136(01)00770-1

[7] L. V. Raulea, L. E. Govaert, F. P. Baaijens: Grain and specimen size effect in processing metal sheets. Proceeding of the 6 th ICTP, (1999), p.939.

[8] R. Eckstein, U. Engel: Behavior of the grain structure in micro sheet metal working, Metal Forming 2000, (2000), p.453.

[9] T. A. Kals, R. Eckstein: Miniaturization in sheet metal working. Journal of Materials Processing Technology. Vol. 103 (2000), p.95.

DOI: https://doi.org/10.1016/s0924-0136(00)00391-5

[10] U. Engel, A. Messner, M. Geiger: Advanced concept for the FE-simulation of metal forming processes for the production of microparts, Proceeding of the 5 th ICTP, (1996), p.903.

[11] U. Engel, S. Geissdoerfer, M. Geiger: Simulation of microforming process-an advanced approach applying a mesoscopic model, Proceeding of the 8 th ICTP, (2005), p.447.

[12] J. F. Michel, P. Picart: Size effects on the constitutive behaviour for brass in sheet metal forming. Journal of Materials Processing Technology. Vol. 141 (2003), p.439.

DOI: https://doi.org/10.1016/s0924-0136(03)00570-3

[13] Y. Saotome, K. Yasuda and H. Kaga: Microdeep drawability of very thin sheet steels. Journal of Materials Processing Technology. Vol. 113 (2001), p.641.

DOI: https://doi.org/10.1016/s0924-0136(01)00626-4

Fetching data from Crossref.
This may take some time to load.