Sheet Metal Forming - A New Kind of Forge for the Future

Article Preview

Abstract:

Within the last years in sheet metal forming a trend towards forming at elevated temperatures as well as temperature assisted forming technologies can be observed. This development is caused by the increasing need on light and high strength materials in order to fulfill the demands of light weight structures. The decision which kind of temperature assistance is the most useful in order to improve the formability of the material depends on a hugh number of process influencing parameters, like e.g. the material itself, the geometry of the component, the number of forming operations etc.. In this paper the general possibility to separate different temperature assisted forming processes with regard to the used materials will be introduced. The different forming procedures will be explained and discussed. Examples with an industrial relevance are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-20

Citation:

Online since:

July 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kleiner; M. Geiger; A. Klaus: Manufacturing of Lightweight Components by Metal Forming. Annals of the CIRP 52/2 (2003), p.521.

DOI: 10.1016/s0007-8506(07)60202-9

Google Scholar

[2] K. Lange, M. Geiger: Private communication.

Google Scholar

[3] R. Neugebauer; T. Altan; M. Geiger; M. Kleiner; A. Sterzing: Sheet Metal Forming at Elevated Temperatures. Annals of the CIRP 2006, Vol. 55/2/2006, in print.

DOI: 10.1016/j.cirp.2006.10.008

Google Scholar

[4] Geiger, M.; Merklein, M.: Adaptive Design of Aluminum Sheets for Deep Drawing Processes. Production Engineering. Annals of the German Academic Society for Production Engineering, IX/1 (2002), p.59.

Google Scholar

[5] M. Hogg: Herstellung und Umformung lokal wärmebehandelter Platinen. (DGM Informationsgesellschaft mbH, Germany 2006).

Google Scholar

[6] M. Merklein; M. Geiger; U. Vogt: Material suited part and process design in sheet forming. In: M. Liewald (Edt. ): New Developments in Sheet Metal Forming. Proceedings. (WerkstoffInformationsgesellschaft, Germany 2006), p.403.

Google Scholar

[7] F. Vollertsen; K. Lange: Enhancement of drawability by local heat treatment. Annals of the CIRP 47/1 (1998), p.181.

DOI: 10.1016/s0007-8506(07)62813-3

Google Scholar

[8] A. Hofmann: Erweiterung der Formgebungsgrenzen beim Umformen von Aluminiumwerkstoffen durch den Einsatz prozessangepasster Platinen. (Meisenbach Verlag, Germany 2002).

Google Scholar

[9] E. Siebel; H. Beisswänger: Ziehversuche mit hartgewalzten und partiell geglühten Ronden zur Erhöhung des Ziehverhältnisses. Mitteilungen für die Mitglieder der Forschungsgesellschaft Blechverarbeitung, Düsseldorf, 7 (1953), p.89.

Google Scholar

[10] F. -J. Dirks: Tiefziehen vorverfestigter und partiell geglühter Ronden aus Aluminium und Aluminiumlegierungen. (TH Berlin, Germany 1971).

Google Scholar

[11] A. Hofmann; T. Pohl; M. Geiger: Deep drawing of locally optimized aluminium blanks. In: M. Geiger (Edt. ): Advanced Technology of Plasticity. Proceedings of the International Conference on Technology of Plasticity 1999, p.1043.

Google Scholar

[12] M. Geiger; M. Merklein; M. Kerausch: Microstructural investigations on aluminium tailored heat treated blanks. Production Engineering. Annals of the German Academic Society for Production Engineering, X/2 (2004), p.47.

DOI: 10.1016/s0007-8506(07)60684-2

Google Scholar

[13] K. Roll; M. Hoff: Herstellung und Umformung loakl wärmebehandelter Platinen aus Aluminiumknetlegierungen. In: R. Kawalla (Edt. ): Herstellungs- und Verarbeitungstechnologien für Magnesium- und Aluminiumknetwerkstoffe, Proceedings of the Conference MEFORM2006, (Germany 2006), p.261.

Google Scholar

[14] M. Geiger; M. Merklein; M. Kerausch: Finite Element Simulation of Deep Drawing of Tailored Heat Treated Blanks. Annals of the CIRP 2004, Vol. 53/1/2004, p.223.

DOI: 10.1016/s0007-8506(07)60684-2

Google Scholar

[15] M. Merklein, M. Kerausch, D. Staud: Finite Element Analysis for Deep Drawing of Tailored Heat Treated Blanks. Proceedings of the 11 th International Conference on Sheet Metal (Germany 2005), p.343.

Google Scholar

[16] K. Lange: Handbook of Metal Forming. (Springer, Germany 1990).

Google Scholar

[17] S. Novotny; M. Celeghini; M. Geiger: Measurement of material properties of aluminium sheet alloys at elevated temperatures. Proceedings of the 8 th International Conference on Sheet Metal 2000, p.363.

Google Scholar

[18] S. Novotny: Innenhochdruck-Umformen von Blechen aus Aluminium- und Magnesiumlegierungen bei erhöhter Temperatur. (Meisenbach Verlag, Germany 2002).

Google Scholar

[19] A. Jäger; P. Lukac; V. Gärtnerova; J. Bohlen; K. U. Krainer: Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures. Journal of Alloys and Compounds, 378 (2004), p.184.

DOI: 10.1016/j.jallcom.2003.11.173

Google Scholar

[20] M. Ullmann; M. Oswald; N. D. Cuong: Werkstoff- und technologische Kennwerte für feinbleche am Beispiel von Magnesium - vergleich von Magnesiumblechen aus gießgewalztem und stranggegossenem Ausgangsmaterial. Proceedings of the Conference MEFORM2006, p.65.

Google Scholar

[21] M. Geiger; M. Merklein; J. Hecht; A. Stich: Fertigungsaspekte zur umformtechnischen Herstellung von Bauteilen aus Magnesiumblech für den Fahrzeugbau. Europäische Forschungsgesellschaft für Blechverarbeitung e.V., (Germany 2006), p.149.

Google Scholar

[22] B. Viehweger; A. Sviridov: Wirkmedienbasierte Warmumformung von Magnesiumblechen. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 98 (2003) 10, p.483.

DOI: 10.3139/104.100685

Google Scholar

[23] E. Doege; G. Kurz; G. Walter; T. Meyer: Umformen von Magnesiumfeinblechen mit temperierten Werkzeugen. EFB-Forschungsbericht Vol. 195.

Google Scholar

[24] D. Schmoeckel; C. Heller: Umformen von Aluminiumblechen bei erhöhten Temperaturen. EFBForschungsbericht Vol. 34.

Google Scholar

[25] P. Bogon: Werkzeugtechnik zur Magnesium-Blechumformung. Blech Rohre Profile, 6/7 (2005) 52, p.36.

Google Scholar

[26] H. Palaniswamy; G. Ngaile; T. Altan: Finite element simulation of magnesium alloy sheet forming at elevated temperatures. Journal of Materials Processing Technology, 146 (2004), p.52.

DOI: 10.1016/s0924-0136(03)00844-6

Google Scholar

[27] H. Palaniswamy; T. Altan: Warm Deep Drawing of Mg Alloy Sheet. Stamping Journal, 10/11 (2004), p.34.

Google Scholar

[28] M. Pitz: Laserunterstützes Biegen höchstfester Mehrphasenstähle. (Meisenbach Verlag, Germany 2005).

Google Scholar

[29] E. Doege, H. Meyer-Nolkemper, I. Saeed: Fließkurvenatlas metallischer Werkstoffe. (Germany 1986).

Google Scholar

[30] M. Geiger; M. Merklein; M. Pitz: Laser and forming technology - an idea and the way of implementation. Journal of Materials Processing 151 (2004), p.3.

DOI: 10.1016/j.jmatprotec.2004.04.004

Google Scholar

[31] R. Neugebauer; A. Sterzing; A. Göschel: Prozessgröße Temperatur - Warmumformung von Karosseriewerkstoffen. Proceedings of the 4 th CBC, (Germany 2005), p.137.

Google Scholar

[32] R. Kolleck; D. Steinhöfer; J.A. Feindt: Warmumformung und Kaltumformung - zwei ergänzende Verfahren im Karosserieleichtbau. Proceedings of the International Conference Neuere Entwicklungen in der Blechumformung, (Germany 2004), p.245.

Google Scholar

[33] J. Lenze; T. Heller; S. Sikora: Herstellung von Karosseriebauteilen aus warmumgeformten höchstfesten Stahlwerkstoffen. Europäische Forschungsgesellschaft für Blechverarbeitung e.V., (Germany 2005), p.53.

Google Scholar

[34] G. Schießl; T. Possehn; T. Heller; S. Sikora: Manufacturing a roof frame from ultra high strength steel materials by hot stamping. Proceedings of the IDDRG International Deep Drawing Research Group Conference (Germany 2004).

Google Scholar

[35] L. Garcia-Aranda; Y. Chastel; J. F. Pascual: Experiments and simulation of hot stamping of quenchable steels. Advanced Technology of Plasticity 2002, Proceedings of the 7 th ICTP, Volume 2, p.1135.

Google Scholar

[36] S. Masayoshi; M. Jun; K. Kazuhisa; O. Masahiro; M. Toshihiro: Properties of Aluminized Steels for Hot Forming. Proceedings of IBEC 2003, (Japan 2003), p.267.

Google Scholar

[37] K. Mori; S. Maki; Y. Tanaka: Warm and hot stamping of ultra high strength steel sheets using resistance heating. Annals of the CIRP 54/1/2005, p.209.

DOI: 10.1016/s0007-8506(07)60085-7

Google Scholar

[38] P. Hein: A Global Approach of the Finite Elemente Simulation of Hot Stamping. Proceedings of the 11 th International Conference on Sheet Metal (2005), p.763.

Google Scholar

[39] L. Burkhardt; B. Grigo; B. Griesbach: Simulation des Warmumformprozesses auf Basis der Indentifikation einflussreicher Parameter. Proceedings 1. Erlanger Workshop Warmblechumformung. (Germany 2006), p.31.

Google Scholar

[40] J. Wilsius; P. Hein; R. Kefferstein: Status and future trends of hot stamping of USIBOR 1500P. Proceedings 1. Erlanger Workshop Warmblechumformung. (Germany 2006), p.82.

Google Scholar

[41] http: /www. lft. uni-erlangen. de/SEITEN/FG552.

Google Scholar

[42] M. Geiger; M. Merklein; C. Hoff: Determination of the heat transfer during hot stamping. Proceedings Steel-Future for the Automotive Industry. (Germany 2005), p.179.

Google Scholar

[43] M. Merklein; J. Lechler: Determination of influencing parameters on the hot stamping process. Proceedings Asia Steel Conference 2006. (Japan 2006), p.912.

Google Scholar

[44] M. Merklein; J. Lechler; M. Geiger: Characterisation of the flow properties of the quenchenable ultra high strength steel 22MnB5. Annals of CIRP, Vol. 55/1/2006, p.229.

DOI: 10.1016/s0007-8506(07)60404-1

Google Scholar

[45] M. Eriksson; M. Oldenburg; M. C. Somani; L. P. Karjalainen: Testing and evaluation of material data for analysis of forming and hardening of boron steel components. Modelling Simul. Mater. Sci. Eng. 10 (2002), p.277.

DOI: 10.1088/0965-0393/10/3/303

Google Scholar