Experimental Procedure Definition for Evaluating the Formability at Warm Temperatures of AZ31 Magnesium Alloy

Abstract:

Article Preview

In the present work the definition of a test procedure for evaluating the formability of Mg alloy thin sheets was investigated taking into account both temperature and strain rate. A numericalexperimental approach was adopted by the authors: numerical simulations were run with the aim of: (i) defining the punch geometry of the formability test equipment in order to have a uniform, fast and constant temperature distribution on the specimen; (ii) setting the test operating conditions in order to force the specimen failure in a region where temperature and strain can be easily acquired. Some formability tests were performed and strain fields were measured using an optical measurement system.

Info:

Periodical:

Main Theme:

Edited by:

F. Micari, M. Geiger, J. Duflou, B. Shirvani, R. Clarke, R. Di Lorenzo and L. Fratini

Pages:

39-46

Citation:

G. Palumbo et al., "Experimental Procedure Definition for Evaluating the Formability at Warm Temperatures of AZ31 Magnesium Alloy", Key Engineering Materials, Vol. 344, pp. 39-46, 2007

Online since:

July 2007

Export:

Price:

$38.00

[1] Yin D.L., Zhang K.F., Wang G.F., Han W.B.: Warm deformation behaviour of hot-rolled AZ31 Mg alloy; Material Science & Engineering, A392, pp.320-325 (2005).

DOI: https://doi.org/10.1016/j.msea.2004.09.039

[2] T. Naka, G. Torikai, R. Hino, F. Yoshida: The effects of temperature and forming speed on FLD; International Journal of Material Processing Technology, Vol. 113, pp.648-653 (2001).

[3] Y. Dahan, Y. Chastel, P. Duroux, P. Hein, E. Massoni, J. Wilsius: Formability investigations for the hot stamping process, Proceedings of the IDDRG conference, pp.395-402 (2006).

[4] Turetta A., Ghiotti A., Bruschi S.: Testing material formability in hot stamping operations; Proceedings of the IDDRG conference, pp.99-104 (2006).

[5] Palumbo G., Sorgente D., Tricarico, S.H. Zhang, W.T. Zheng, L. X. Zhou: Formability evaluation in warm conditions of AZ31 magnesium alloy; Proceedings of the IDDRG conference, pp.59-66 (2006).

[6] Bruni C., Forcellese A., Gabrielli F., Palumbo G., Sorgente D., Tricarico L., Simoncini M.: Bending of Magnesium Stripes at Elevated Temperatures; Proceedings of ESAFORM conference, pp.271-274 (2006).

[7] Palumbo G., Sorgente D., Tricarico L., Zhang S.H., Zheng W.T.: Numerical and experimental analysis of the Mg alloy formability when superimposing a thermal gradient, Contemporary Achiev. in Mechanics, Manuf. and Material Science, AMME World Press, pp.780-787 (2006).

[8] Palumbo G., Sorgente D., Tricarico L., Xu Y.C., Zhang S.H., Zheng W.T.: Numerical and experimental investigations of the heating and forming phase in the Warm Deep Drawing process of AZ31 sheets, accepted for publication in the Journal of Mater. Proces. Tech.

[9] Liebertz H. et alii: Guideline for the determination of forming limit curves; Proceedings of the IDDRG conference, pp.216-224 (2004).

[10] Fuh-Kuo Chen., Tyng-Bin Huang: Formability of stamping magnesium-alloy AZ31 sheets; Journal of Materials Processing Technology, Vol. 142, pp.643-647 (2003).

DOI: https://doi.org/10.1016/s0924-0136(03)00684-8

[11] M. Redecker, K. Roll, S. Hong, H. Hoffmann: Experimental identification and numerical verification of the process window in the warm forming of magnesium sheet metal (az31); Proceedings of the IDDRG conference, pp.311-318 (2006).

[12] Zhang K.F., Yin D.L., Wu D.Z.: Formability of AZ31 magnesium alloy sheets at warm working conditions; Int. Journal of Machine Tools & Manufacture, Vol. 146, pp.1276-1280 (2006).

DOI: https://doi.org/10.1016/j.ijmachtools.2006.01.014