Fabrication and Some Properties of Textured Ceramics by Colloidal Processing in High Magnetic Field

Article Preview

Abstract:

Recently to improve properties, highly microstructure controlled ceramics such as fine-grained, textured and laminated structures are required. We have demonstrated a new processing of textured ceramics with a feeble magnetic susceptibility by colloidal processing in a high magnetic field and subsequent heating. As colloidal processing, slip casting and electrophoretic deposition (EPD) have been conducted successfully. Colloidal processing is known to be a powerful method for consolidating fine particles with a high density and homogeneous microstructure. The degree of orientation strongly depends on the particle dispersion and some processing factors, such as particle size, applied magnetic field, concentration of the suspension, sintering temperature, etc. Crystalline-textured controlled laminated composites can be fabricated using EPD by varying the angle between the vectors of electric field and magnetic field. Also textured ceramics with complicated structure can be fabricated by reaction sintering. The colloidal processing in a high magnetic field confers several advantages and it is possible for this type of processing to be applied to non-cubic ceramics, such as alumina, titania, zinc oxide, tin oxide, hydroxy apatite, aluminium nitride, silicon carbide, silicon nitride, etc. The textured ceramics showed anisotropic properties depending on the crystal plane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-106

Citation:

Online since:

August 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Suvaci and G. L. Messing: J. Am. Ceram. Soc. Vol. 83 (2000), pp. (2041).

Google Scholar

[2] K. Hirao, M. Ohashi, M. E. Brito and S. Kanzaki.: J. Am. Ceram. Soc. Vol. 78 (1995), p.1687.

Google Scholar

[3] M. M. Seabaugh, I. H. Kerscht and G. L. Messing: J. Am. Ceram. Soc. Vol. 80 (1997), p.1181.

Google Scholar

[4] E. Suvaci, K. -S. Oh and G. L. Messing: Acta. Mater. Vol. 49 (2001), pp. (2075).

Google Scholar

[5] T. Takenaka and K. Sakata: Jpn. J. Appl. Phys. Vol. 19 (1980), p.31.

Google Scholar

[6] Y. Yoshizawa, M. Toriyama and S. Kanzaki: J. Am. Ceram. Soc. Vol. 84 (2001), p.1392.

Google Scholar

[7] T. S. Suzuki, Y. Sakka and K. Kitazawa: Adv. Eng. Mater. Vol. 3 (2001), p.490.

Google Scholar

[8] T. S. Suzuki, H. Otsuka, Y. Sakka, K. Hiraga and K. Kitazawa : Jpn. J. Powder Powder Met. Vol. 47 (2000), p.1010.

Google Scholar

[9] Y. Sakka and T. S. Suzuki: J. Ceram. Soc. Jpn. Vol. 113 (2005), p.26.

Google Scholar

[10] Y. Sakka: J. Ceram. Soc. Jpn. Vol. 114 (2006), p.371.

Google Scholar

[11] Y. Sakka, T.S. Suzuki and K. Hiraga: Key Eng. Mater. Vol. 224-2 (2002), p.619.

Google Scholar

[12] T. S. Suzuki and Y. Sakka: Jpn. J. Appl. Phys. Vol. 41 (2002), pp. L1272.

Google Scholar

[13] Y. Sakka, T. S. Suzuki, N. Tanabe, S. Asai and K. Kitazawa.: Jpn. J. Appl. Phys Vol. 41 (2002), pp. L1416.

Google Scholar

[14] T. S. Suzuki and Y. Sakka: Chem. Lett. (2002), p.1204.

Google Scholar

[15] K. Inoue, K. Sassa, Y. Yokogawa, Y. Sakka, M. Okida and S. Asai: Mater. Trans., Vol. 44 (2003), p.1133.

Google Scholar

[16] Y. Sakka and T. S. Suzuki: Key Eng. Mater. Vol. 280-283 (2005), p.721.

Google Scholar

[17] A. Makiya, D. Kusano, S. Tanaka, N. Uchida, K. Uematsu, T. Kimura and K. Kitazawa: J. Ceram. Soc. Jpn. Vol. 111 (2003), p.702.

Google Scholar

[18] S. Tanaka, A. Makiya, S. Watanabe, Z.J. Kato, N. Uchida and K. Uematsu: J. Ceram. Soc. Jpn. Vol. 112 (2004), p.276.

Google Scholar

[19] T. S. Suzuki and Y. Sakka: Scripta Mater., Vol. 52 (2005), p.583.

Google Scholar

[20] C.Y. Wu, S.Q. Li, K. Sassa, Y. Sakka S. Suzuki and S. Asai: ISIJ Inter., Vol. 45 (2005), p.997.

Google Scholar

[21] K. Iwai, J. Akiyama, M.G. Sun and S. Asai: Sci. Technol. Adv. Mater. Vol. 7 (2006), p.365.

Google Scholar

[22] X. Zhu, T. S. Suzuki, T. Uchikoshi, T. Nishimura and Y. Sakka: J. Ceram. Soc. Jpn., Vol. 114 (2006), p.979.

Google Scholar

[23] X. Zhu, T. Uchikoshi and Y. Sakka: Mater. Sci. Forum, Vol. 534-536 (2007), p.1009.

Google Scholar

[24] E. Guilmean, D. Chateigner, T. S. Suzuki, Y. Sakka nad C. Henrist : Chem. Mater., Vol. 17 (2005), p.102.

Google Scholar

[25] T. S. Suzuki, T. Uchikoshi and Y. Sakka: Sci. Technol. Adv. Mater. Vol. 7 (2006), p.356.

Google Scholar

[26] T. S. Suzuki, Y. Sakka and K. Kitazawa: J. Ceram. Soc. Jpn. Vol. 109 (2001), p.886.

Google Scholar

[27] T. S. Suzuki, T. Uchikoshi and Y. Sakka: J. Ceram. Soc. Jpn. Vol. 114 (2006), p.59.

Google Scholar

[28] S. Saito, Y. Sakka, T. S. Suzuki and T. Nakata: Key Eng. Mater., Vol. 336-338 (2007), p.1133.

Google Scholar

[29] Y. Sakka, D.D. Bilinger and I. A. Aksay: J. Am. Ceram. Soc., Vol. 78 (1995), p.479.

Google Scholar

[30] Y. Sakka, A. Honda, T. S. Suzuki, Y. Moriyoshi: Solid State Inonics Vol. 172 (2004), p.341.

Google Scholar

[31] F. Q. Tang, H. Fudouzi, T. Uchikoshi and Y. Sakka: J. Eur. Ceram. Soc. Vol. 24 (2004), p.341.

Google Scholar

[32] Y. Sakka, F. Q. Tang, H. Fudouzi and T. Uchikoshi: Sci. Technol. Adv. Mater. Vol. 6 (2005), p.915.

Google Scholar

[33] T. Uchikoshi, T. S. Suzuki, H. Okuyama and Y. Sakka: J. Mater. Res. Vol. 19 (2004), p.1487.

Google Scholar