Fabrication and Mechanical Properties of In Situ Monazite-Coated Alumina Fiber-Reinforced Alumina/YAG Composites

Article Preview

Abstract:

Monazite(LaPO4)-coated alumina-fiber/alumina-YAG (Y3Al5O12) matrix composites were fabricated by in-situ coating of monazite followed by hot-pressing, and the effects of coating and sintering condition on mechanical properties of the composite were examined. Alumina powder and YAG powder (weight ratio, 95:5) were used as raw materials for green sheets, which was fabricated by tape casting technique. Monazite was synthesized by the in-situ reaction of La(NO3) solution with H3PO4 on the surface of fibers. After slurry infiltration into the coated fiber bundles, the fiber cloths were laminated with the green sheets alternately, then they were heat-treated, finally sintered by hot-pressing at various temperatures. The mechanical properties of the composites were changed by the fabrication conditions. Non-brittleness of the composites reduced with the increase of sintering temperature. The composites sintered at 1200oC showed the highest Weibull modulus and pseudo-ductility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-218

Citation:

Online since:

August 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. E. D. Morgan and D. B Marshall, J. Am. Cream. Soc., Vol. 78 (1995) p.1553.

Google Scholar

[2] M. Holmquist, M. R. Lundberg, O, Sudre, A. G. Razzell, L. Molliex, J. Benoit and J. J. Adlerborn, J. Euro. Ceram. Soc., Vol. 20 (2000) p.599.

DOI: 10.1016/s0955-2219(99)00258-7

Google Scholar

[3] D. B. Marshall and J. B. Davis, P. E. D. Morgan and J. R. Porter, Key Engineering Materials, Vol. 127-131 (1997) p.27.

Google Scholar

[4] D. B. Marshall and J. B. Davis, Current Opinion in Solid State & Materials Science Vol. 5 (2001) p.283.

Google Scholar

[5] R. J. Kerans, R. S. Hay, T. A. Parthasarathy and M. K. Cinibulk, J. Am. Ceram. Soc., Vol. 85, (2002) p.2599.

Google Scholar

[6] R. S. Hay and E. E. Boakye, J. Am. Ceram. Soc., Vol. 84, (2001) p.2783.

Google Scholar

[7] E. E. Boakye, R. S. Hay and M. D. Petry, J. Am. Cream. Soc., Vol. 82, (1999) p.2321.

Google Scholar

[8] G. Markys, R. L. Cain, A. Tye, P. Rian, H. Lewis and J. Gent, Key Engineering Materials Vol. 127-131 (1997) p.37.

DOI: 10.4028/www.scientific.net/kem.127-131.37

Google Scholar

[9] A. Cazzato, M. Colby, D. Daws, J. Davis, P. Morgan, J. Peter, S. Butner and B. Jurf, Ceram. Eng. & Sci. Proc., Vol. 18, (1997) p.269.

Google Scholar

[10] T. J. Hwang, M. R. Hendrick, H. Shao, H. G. Hornis and A. T. Hunt, Materials Sci. & Eng. A, Vol. 244 (1998) p.91.

Google Scholar

[11] M. Koopman, S. Duncan, K. K. Chawla and C. Coffin, Composite A, Vol. 32, (2001) p.1039.

Google Scholar

[12] J. B. Davis, D. B. Marshall and P. E. D. Morgan, J. Euro. Ceram. Soc., Vol. 20, (2000) p.583.

Google Scholar

[13] P. Y. Lee, M. Imai and T. Yano, Composites Interfaces, Vol. 11, (2004) p.1.

Google Scholar

[14] P. Y. Lee and T. Yano, J. Ceram. Soc. Jpn. Supplement, Vol. 112.

Google Scholar

[5] (2004) p. S333.

Google Scholar

[15] P. Y. Lee, M. Imai and T. Yano, J. Ceram. Soc. Jpn., Vol. 112.

Google Scholar

[1] (2004) p.29.

Google Scholar

[16] K. A. Keller, T. Mah, T. A. Parthasarathy, E. E. Boakye, P. Mogilevsky and M. K. Clinibulk, J. Am. Ceram. Soc., Vol. 86, (2003) p.325.

Google Scholar

[17] K. A. Keller, T. Mah, T. A. Parthasarathy and M. Cinibulk, Ceram. Eng. & Sci. Proc., Vol. 22, (2001) p.667.

Google Scholar

[18] P. Y. Lee and T. Yano, Materials Processing for Properties and Performance, Vol. 2, (2004) p.265.

Google Scholar

[19] P. Y. Lee, M. Imai and T. Yano, J. Ceram. Soc. Jpn., Vol. 112.

Google Scholar

[12] (2004) p.628.

Google Scholar

[20] E. E. Boakye, R. S. Hay, P. Mogilevsky, L. M. Douglas, J. Am. Ceram. Soc., 84, (2001) p.2793.

Google Scholar