Finite Element Analysis about Effects of Particle Size on Deformation Behavior of Particle Reinforced Metal Matrix Composites

Article Preview

Abstract:

By incorporating the Taylor-based nonlocal theory of plasticity, the finite element method (FEM) is applied to investigate the effect of particle size on the deformation behavior of the metal matrix composites. In the simulation, the two-dimensional plane strain and random distribution multi-particles model are used. It is shown that, at a fixed particle volume fraction, there is a close relationship between the particle size and the deformation behavior of the composites. The yield strength and plastic work hardening rate of the composites increase with decreasing particle size. The predicted stress-strain behaviors of the composites are qualitative agreement with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 353-358)

Pages:

1263-1266

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. T. Kiser, F. W. Zok, D. S. Wilkinson: Acta Mater. Vol. 44 (1996), p.3465.

Google Scholar

[2] S. V. Kamat, A. D. Rollett, J. P. Hirth: Scripta Metall. Vol. 25 (1991), p.27.

Google Scholar

[3] H. L. Cox: Br. J. Appl. Phys. Vol. 2 (1952), p.73.

Google Scholar

[4] V. C. Nardone, K M. Prewo: Scripta Metall. Vol. 20 (1986), p.43.

Google Scholar

[5] J. D. Eshelby: Proc. R. Soc. A Vol. 240 (1957), p.367.

Google Scholar

[6] T. Mori, K. Tanaka: Ata Metall. Vol. 21 (1973), p.571.

Google Scholar

[7] T. Christman, A. Needleman, Suresh S: Acta Metall. Vol. 37 (1989), p.3029.

Google Scholar

[8] G. Bao, J. W. Hutchinson, R. M. McMeeking: Acta Metall. Vol. 39 (1991), p.1871.

Google Scholar

[9] H. Gao, Y. Huang: Int. J. Solids and Struct. Vol. 38 (2001), p.2615.

Google Scholar

[10] C. R. Chen, S. Y. Qin, S. X. Li, J. L. Wen: Mater. Sci. Eng. A Vol. 278 (2000), p.96.

Google Scholar

[11] C. W. Nan, D. R. Clarke: Acta Mater. Vol. 44 (1996), p.3801.

Google Scholar

[12] Y. W. Yan, L. Geng and A. B. Li: submitted to Materials Science and Engineering A (2006).

Google Scholar

[13] J. A. Isaacs, A. Mortensen: Metall. Trans. A Vol. 23 (1992), p.1207.

Google Scholar

[14] J. R. Brockenbrough, W .H. Hunt, O. Richmond: Scripta Metal. Vol. 27 (1992), p.385.

Google Scholar

[15] D. J. Lloyd: Int Mater Rev. Vol. 34 (1994), p.1.

Google Scholar

[16] L. H. Dai, Z. Ling, Y. L. Bai: Scripta Metall. Vol. 41 (1999), p.245.

Google Scholar

[17] A. Levy, J. M. Papazian: Acta Metall. Mater. Vol. 39 (1991), p.2255.

Google Scholar

[18] C. W. Nan, D. R. Clarke: Acta Mater. Vol. 44 (1996).

Google Scholar