Metal Working and Dislocation Structures

Abstract:

Article Preview

Microstructural observations are presented for different metals deformed from low to high strain by both traditional and new metal working processes. It is shown that deformation induced dislocation structures can be interpreted and analyzed within a common framework of grain subdivision on a finer and finer scale down to the nanometer dimension, which can be reached at ultrahigh strains. It is demonstrated that classical materials science and engineering principles apply from the largest to the smallest structural scale but also that new and unexpected structures and properties characterize metals with structures on the scale from about 10 nm to 1 μm.

Info:

Periodical:

Key Engineering Materials (Volumes 353-358)

Edited by:

Yu Zhou, Shan-Tung Tu and Xishan Xie

Pages:

9-16

Citation:

N. Hansen "Metal Working and Dislocation Structures", Key Engineering Materials, Vols. 353-358, pp. 9-16, 2007

Online since:

September 2007

Authors:

Export:

Price:

$38.00

[1] N. Hansen: Metall. Trans. A Vol. 32A (2001), p.2917.

[2] D. A. Hughes and N. Hansen, Plastic Deformation Structures, ASM Handbook, ASM, International, Materials Park, Ohio, USA (2004) p.192.

[3] Evolution of Deformation Microstructures in 3D, 25th Risø Int. Symp. on Mat. Science, Eds. C. Gundlach et al., (Roskilde, Denmark 2004).

[4] Q. Liu and N. Hansen: Scripta Metall. Mater. Vol. 32 (1995), p.1289.

[5] D. A. Hughes and N. Hansen: Philos. Mag. Vol. 83 (2003), p.3871.

[6] X. Huang et al.: Ultrafine Grained Materials III, Eds. Y. T. Zhu et al., (Warrrendale, Pennsylvania, USA 2004), p.235.

[7] D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater. Vol. 25 (1991), p.1557.

[8] X. Huang, G. Winther submitted for publication (2007).

[9] X. Huang and N. Hansen: Scripta Mater. Vol. 37 (1997), p.1.

[10] G. Winther: Acta Mater. Vol. 51 (2003), p.417.

[11] G. Winther and X. Huang submitted for publication (2007).

[12] W. Pantleon: Mater. Sci. Engng. A Vol. 400 (2005), p.118.

[13] D. A. Hughes et al.: Phys. Rev. Lett. Vol. 81 (1998), p.4664.

[14] A. Godfrey and D. A. Hughes: Acta Mater. Vol. 48 (2000), p.1897.

[15] W. Pantleon and N. Hansen: Acta Mater. Vol. 49 (2001), p.1479.

[16] Les Nanosciences, CNRS 2006, France, p.36.

[17] Ultrafine Grained Materials III, Eds. Y.T. Zhu et al., (Warrrendale, Pennsylvania, USA 2004), p.1.

[18] D. A. Hughes and N. Hansen: Phys. Rev. Lett. Vol. 8713 (2001), pp.135503-1.

[19] Q. Liu et al.: Acta Mater. Vol. 50 (2002), p.3789.

[20] D. A. Hughes and N. Hansen: Acta Mater. Vol. 48 (2000), p.2985.

[21] X. Huang et al.: Science Vol. 312 (2006), p.249.

Fetching data from Crossref.
This may take some time to load.