Metal Working and Dislocation Structures

Article Preview

Abstract:

Microstructural observations are presented for different metals deformed from low to high strain by both traditional and new metal working processes. It is shown that deformation induced dislocation structures can be interpreted and analyzed within a common framework of grain subdivision on a finer and finer scale down to the nanometer dimension, which can be reached at ultrahigh strains. It is demonstrated that classical materials science and engineering principles apply from the largest to the smallest structural scale but also that new and unexpected structures and properties characterize metals with structures on the scale from about 10 nm to 1 μm.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 353-358)

Pages:

9-16

Citation:

Online since:

September 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Hansen: Metall. Trans. A Vol. 32A (2001), p.2917.

Google Scholar

[2] D. A. Hughes and N. Hansen, Plastic Deformation Structures, ASM Handbook, ASM, International, Materials Park, Ohio, USA (2004) p.192.

Google Scholar

[3] Evolution of Deformation Microstructures in 3D, 25th Risø Int. Symp. on Mat. Science, Eds. C. Gundlach et al., (Roskilde, Denmark 2004).

Google Scholar

[4] Q. Liu and N. Hansen: Scripta Metall. Mater. Vol. 32 (1995), p.1289.

Google Scholar

[5] D. A. Hughes and N. Hansen: Philos. Mag. Vol. 83 (2003), p.3871.

Google Scholar

[6] X. Huang et al.: Ultrafine Grained Materials III, Eds. Y. T. Zhu et al., (Warrrendale, Pennsylvania, USA 2004), p.235.

Google Scholar

[7] D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater. Vol. 25 (1991), p.1557.

Google Scholar

[8] X. Huang, G. Winther submitted for publication (2007).

Google Scholar

[9] X. Huang and N. Hansen: Scripta Mater. Vol. 37 (1997), p.1.

Google Scholar

[10] G. Winther: Acta Mater. Vol. 51 (2003), p.417.

Google Scholar

[11] G. Winther and X. Huang submitted for publication (2007).

Google Scholar

[12] W. Pantleon: Mater. Sci. Engng. A Vol. 400 (2005), p.118.

Google Scholar

[13] D. A. Hughes et al.: Phys. Rev. Lett. Vol. 81 (1998), p.4664.

Google Scholar

[14] A. Godfrey and D. A. Hughes: Acta Mater. Vol. 48 (2000), p.1897.

Google Scholar

[15] W. Pantleon and N. Hansen: Acta Mater. Vol. 49 (2001), p.1479.

Google Scholar

[16] Les Nanosciences, CNRS 2006, France, p.36.

Google Scholar

[17] Ultrafine Grained Materials III, Eds. Y.T. Zhu et al., (Warrrendale, Pennsylvania, USA 2004), p.1.

Google Scholar

[18] D. A. Hughes and N. Hansen: Phys. Rev. Lett. Vol. 8713 (2001), pp.135503-1.

Google Scholar

[19] Q. Liu et al.: Acta Mater. Vol. 50 (2002), p.3789.

Google Scholar

[20] D. A. Hughes and N. Hansen: Acta Mater. Vol. 48 (2000), p.2985.

Google Scholar

[21] X. Huang et al.: Science Vol. 312 (2006), p.249.

Google Scholar