Modeling on Falling Velocity of Sodiumtetraborate Aqueous Solution Drops before the Gelation of PVA-TiO2 Suspensions by the Runge-Kutta Method in Matlab 6.5

Article Preview

Abstract:

Numerical modeling on falling of sodiumtetraborate aqueous solution drops as the initiator before the gelation of PVA-TiO2 suspensions was conducted. Effect of time and elevation angle of the PVA-TiO2 suspensions on the falling velocity of the sodiumtetraborate aqueous solution drops was analyzed. An ordinary differential equation was given. Integration of the ordinary differential equation was fulfilled using the fourth-order Runge-Kutta method in Matlab 6.5. From the model, a two-order nonlinear effect of time on the velocity of the drops during falling is determined and the quadratic term -3.408t2 serves as the time dependent air resistance. The component of the falling velocity along the suspensions increases with the increasing of the elevation angle. However, for the component vertical to the suspensions, with elevation angle increasing, it decreases.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 368-372)

Pages:

1683-1685

Citation:

Online since:

February 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: