Low Temperature Synthesis and Characterization of CaO and MgO- Stabilized Nanocrystalline Tetragonal Zirconia by Citrate Gel Process

Abstract:

Article Preview

The citrate gel method, similar to the polymerized complex method, was used to synthesize homogenous tetragonal zirconia at 800oC and 1000oC. Nanocrystalline tetragonal single phase has been fully stabilized with 3, 7, 10 mol% CaO and 10, 15 mol% MgO at 800oC, respectively. In addition, the XRD analysis showed the absence of monoclinic phase after addition of 7 and 10 mol% CaO into zirconia-based solid solutions, which have been fully stabilized both 800oC and 1000oC. The crystallite sizes of the t-ZrO2 with 3, 7 and 10 mol% CaO at 1000oC were 32, 28 and 29nm, respectively. For ZrO2- x mol% MgO (x=3, 10, 15) solid solution, the crystallite sizes of samples at 800oC were less than 29nm, however it was increased up to 69nm at 1000oC. The prepared gel and subsequent heat-treated powders were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM) to get detail information regarding to differentiation of polymorphs of zirconia as well as formation of powders.

Info:

Periodical:

Key Engineering Materials (Volumes 368-372)

Edited by:

Wei Pan and Jianghong Gong

Pages:

754-757

DOI:

10.4028/www.scientific.net/KEM.368-372.754

Citation:

H. Gocmez and H. Fujimori, "Low Temperature Synthesis and Characterization of CaO and MgO- Stabilized Nanocrystalline Tetragonal Zirconia by Citrate Gel Process", Key Engineering Materials, Vols. 368-372, pp. 754-757, 2008

Online since:

February 2008

Export:

Price:

$35.00

[1] F.F. Lange, L.K.L. Falk, B.I. Davis: J. Mat. Res. Vol. 2 (1987), p.66.

[2] Y. N. Vilk: Refrac. and Inds. Ceram. Vol. 37 (1996), p.88.

[3] I. Birkby, R. Stevens: Key Eng. Mat. Vol. 122-124 (1996), p.527.

[4] C. Piconi, G. Maccauro: Biomaterials Vol. 20 (1999), p.1.

[5] R.D. Monte, J. Kapsar: J. Mat. Chem. Vol. 15 (2005), p.633.

[6] B.H. Davis, R.A. Keogh, R. Srinivasan: Catalysis Today Vol. 20 (1994), p.219.

[7] A.D. Brailsford, M. Yussouff, E.M. Logothesis, et al.: Sensor and Actuators B Vol. 42 (1997), p.15.

[8] J.W. Schwank, M. Di Battista: MRS Bulletin Vol. 24 (1999), p.44.

[9] B.C.H. Steele, A. Heinzel: Nature Vol. 414 (2001), p.345.

[10] N.Q. Minh: J. Am. Ceram. Soc. Vol. 76 (1993), p.563.

[11] R. Muccillo, R.C. Buisso Netto, E.N.S. Muccillo: Mat. Let. Vol. 49 (2001), p.197.

[12] M.W. Pitcher, S.V. Ushakov, A. Navrotsky: J. Am. Ceram. Soc. Vol. 88 (2005), p.160.

[13] A. Mondal, S. Ram: J. Am. Ceram. Soc. Vol. 87 (2004), p.2187.

[14] S.K. Durrani, J. Akthar, M. Ahmad, M.A. Hussain: Mat. Chem. and Phys. Vol. 100 (2006), p.324.

[15] J.S. Lee, J.I. Park, T.W. Choi: J. Mat. Sci. Vol. 31 (1996), p.2833.

[16] M. Yashima, K. Ohtake, M. Kakihana, M. Yoshimura: J. Mat. Sci. Vol. 13 (1994), p.1564.

[17] K. Uchiyama, T. Ogihara, T. Ikemoto, et al.: J. Mat. Sci. Vol. 22 (1987), p.4343.

[18] G. Dellagli, G. Mascolo: J. Mat. Sci. Vol. 35 (2000), p.661.

[19] N.A. Dhas, K.C. Patil: J. Mat. Sci. Lett. Vol. 12 (1993), p.1844.

[20] M. Yashima, K. Ohtake, M. Kakihana, M. Yoshimura: J. Am. Ceram. Soc. Vol. 77 (1994), p.2773.

[21] R. Srinivasan, B.H. Davis, O.B. Cavin, C.R. Hubbard: J. Am. Ceram. Soc. Vol. 75 (1992), p.1217.

[22] P. Duran, R.P. Recio, C. Moure: J. Mat. Sci. Lett. Vol. 11 (1992), p.727.

[23] P. Duwez, F. Odell, F.H. Brown: J. Solid St. Chem. Vol. 149 (2000), p.399.

[24] E. Djurado, P. Bouvier, G. Lucazeau: J. Am. Ceram. Soc. Vol. 35 (1952), p.107.

[25] R.C. Garvie: J. Phys. Chem. Vol. 69 (1965), p.1238.

[26] H. Fujimori, M. Yashima, S. Sasaki, et al.: Chem. Phys. Letters. Vol. 346 (2001), p.217.

In order to see related information, you need to Login.