Low Temperature Synthesis and Characterization of CaO and MgO- Stabilized Nanocrystalline Tetragonal Zirconia by Citrate Gel Process

Article Preview

Abstract:

The citrate gel method, similar to the polymerized complex method, was used to synthesize homogenous tetragonal zirconia at 800oC and 1000oC. Nanocrystalline tetragonal single phase has been fully stabilized with 3, 7, 10 mol% CaO and 10, 15 mol% MgO at 800oC, respectively. In addition, the XRD analysis showed the absence of monoclinic phase after addition of 7 and 10 mol% CaO into zirconia-based solid solutions, which have been fully stabilized both 800oC and 1000oC. The crystallite sizes of the t-ZrO2 with 3, 7 and 10 mol% CaO at 1000oC were 32, 28 and 29nm, respectively. For ZrO2- x mol% MgO (x=3, 10, 15) solid solution, the crystallite sizes of samples at 800oC were less than 29nm, however it was increased up to 69nm at 1000oC. The prepared gel and subsequent heat-treated powders were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM) to get detail information regarding to differentiation of polymorphs of zirconia as well as formation of powders.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 368-372)

Pages:

754-757

Citation:

Online since:

February 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.F. Lange, L.K.L. Falk, B.I. Davis: J. Mat. Res. Vol. 2 (1987), p.66.

Google Scholar

[2] Y. N. Vilk: Refrac. and Inds. Ceram. Vol. 37 (1996), p.88.

Google Scholar

[3] I. Birkby, R. Stevens: Key Eng. Mat. Vol. 122-124 (1996), p.527.

Google Scholar

[4] C. Piconi, G. Maccauro: Biomaterials Vol. 20 (1999), p.1.

Google Scholar

[5] R.D. Monte, J. Kapsar: J. Mat. Chem. Vol. 15 (2005), p.633.

Google Scholar

[6] B.H. Davis, R.A. Keogh, R. Srinivasan: Catalysis Today Vol. 20 (1994), p.219.

Google Scholar

[7] A.D. Brailsford, M. Yussouff, E.M. Logothesis, et al.: Sensor and Actuators B Vol. 42 (1997), p.15.

Google Scholar

[8] J.W. Schwank, M. Di Battista: MRS Bulletin Vol. 24 (1999), p.44.

Google Scholar

[9] B.C.H. Steele, A. Heinzel: Nature Vol. 414 (2001), p.345.

Google Scholar

[10] N.Q. Minh: J. Am. Ceram. Soc. Vol. 76 (1993), p.563.

Google Scholar

[11] R. Muccillo, R.C. Buisso Netto, E.N.S. Muccillo: Mat. Let. Vol. 49 (2001), p.197.

Google Scholar

[12] M.W. Pitcher, S.V. Ushakov, A. Navrotsky: J. Am. Ceram. Soc. Vol. 88 (2005), p.160.

Google Scholar

[13] A. Mondal, S. Ram: J. Am. Ceram. Soc. Vol. 87 (2004), p.2187.

Google Scholar

[14] S.K. Durrani, J. Akthar, M. Ahmad, M.A. Hussain: Mat. Chem. and Phys. Vol. 100 (2006), p.324.

Google Scholar

[15] J.S. Lee, J.I. Park, T.W. Choi: J. Mat. Sci. Vol. 31 (1996), p.2833.

Google Scholar

[16] M. Yashima, K. Ohtake, M. Kakihana, M. Yoshimura: J. Mat. Sci. Vol. 13 (1994), p.1564.

Google Scholar

[17] K. Uchiyama, T. Ogihara, T. Ikemoto, et al.: J. Mat. Sci. Vol. 22 (1987), p.4343.

Google Scholar

[18] G. Dellagli, G. Mascolo: J. Mat. Sci. Vol. 35 (2000), p.661.

Google Scholar

[19] N.A. Dhas, K.C. Patil: J. Mat. Sci. Lett. Vol. 12 (1993), p.1844.

Google Scholar

[20] M. Yashima, K. Ohtake, M. Kakihana, M. Yoshimura: J. Am. Ceram. Soc. Vol. 77 (1994), p.2773.

Google Scholar

[21] R. Srinivasan, B.H. Davis, O.B. Cavin, C.R. Hubbard: J. Am. Ceram. Soc. Vol. 75 (1992), p.1217.

Google Scholar

[22] P. Duran, R.P. Recio, C. Moure: J. Mat. Sci. Lett. Vol. 11 (1992), p.727.

Google Scholar

[23] P. Duwez, F. Odell, F.H. Brown: J. Solid St. Chem. Vol. 149 (2000), p.399.

Google Scholar

[24] E. Djurado, P. Bouvier, G. Lucazeau: J. Am. Ceram. Soc. Vol. 35 (1952), p.107.

Google Scholar

[25] R.C. Garvie: J. Phys. Chem. Vol. 69 (1965), p.1238.

Google Scholar

[26] H. Fujimori, M. Yashima, S. Sasaki, et al.: Chem. Phys. Letters. Vol. 346 (2001), p.217.

Google Scholar