Shrinkage Performance and Cracking Resistance Mechanism of Rubberized Lightweight Aggregate Concrete with Polymer

Abstract:

Article Preview

To improve the cracking resistance of lightweight aggregate concrete, rubber particles and polymer were added. Experimental results showed that the shrinkage rate increased when rubber particles were added into lightweight aggregate concrete, but when polymer was mixed, the shrinkage rate decreased dramatically. Microstructure analysis indicated that the interface transition zone (ITZ) influenced the shrinkage performance of rubberized lightweight aggregate concrete with polymer directly; the ITZ bondage between rubber particles and cement matrix was very poor and the restriction to shrinkage was weak, which were the main reasons for the increase of shrinkage rate of rubberized lightweight aggregate concrete; when polymer was mixed into the concrete, the hole and ITZ structure of concrete were improved, which made the strain energy absorbing function of rubber particles can be exerted entirely and the flexibility of ITZ was boosted, thereby the shrinkage performance and cracking resistance of lightweight aggregate concrete were improved.

Info:

Periodical:

Key Engineering Materials (Volumes 385-387)

Edited by:

H.S. Lee, I.S. Yoon and M.H. Aliabadi

Pages:

817-820

DOI:

10.4028/www.scientific.net/KEM.385-387.817

Citation:

J. Wang et al., "Shrinkage Performance and Cracking Resistance Mechanism of Rubberized Lightweight Aggregate Concrete with Polymer", Key Engineering Materials, Vols. 385-387, pp. 817-820, 2008

Online since:

July 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.