The Study of Ignition Parameters for Energy Efficient Processing of High Temperature Non-Oxide Ceramics by the Micropyretic Synthesis Route

Article Preview

Abstract:

The influence of ignition parameters for energy efficient processing of high temperature non-oxide ceramics by the micropyretic synthesis route is studied numerically in this article. The simulation results show that a lower ignition power leads to longer ignition time to initiate reactions. An increase in the ignition time also increases the length of pre-heating zone before propagating, which further changes the initiate propagation velocity and oscillatory frequency of the temperature variations. Such changes in the initiate propagation velocity and temperature variations result in inhomogeneous structures at the ignition spot. The simulation also indicates that using a higher power to ignite the micropyretic reactions can lower the ignition time and further prevent the inhomogeneous structures from being formed at the ignition spot. However, more heat loss is noted to occur due to a high temperature gradient and the energy required to ignite the reaction. The numerical calculation indicates that there is a 20 % increase in the required energy and a 90% decrease in the required time to ignite the specimen when the ignition power is increased from 87.5 kJ/(g・s) to 962.5 kJ/(g ・s). In addition, the effect of the individual material property on ignition is also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-14

Citation:

Online since:

October 2008

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.G. Lakshmikantha, J.A. Sekhar: J. Mater. Sci. Vol. 28 (1993), p.6403.

Google Scholar

[2] M.G. Lakshmikantha, J.A. Sekhar: J. Am. Ceram. Soc. Vol. 77 (1994), pp.202-210.

Google Scholar

[3] H.P. Li, S. B. Bhaduri and J.A. Sekhar: Metall. Mat. Trans. A Vol. 24A (1992), pp.251-261.

Google Scholar

[4] H.P. Li and J.A. Sekhar: J. Mater. Res. Vol. 10(10) (1995), pp.2471-2480.

Google Scholar

[5] Y.S. Naiborodenko and V.I. Itin: Combust. Explos. Shock Waves Vol. 11(3) (1975), pp.293-300.

Google Scholar

[6] A.G. Merzhanov and B.I. Khaikin: Prog. Energy Combust. Sci. Vol. 14 (1988), pp.1-98.

Google Scholar

[7] V.M. Shkiro and G.A. Nersisyan: Combust. Explos. Shock Waves (Engl. Transl. ) Vol. 14(1) (1978), pp.121-122.

DOI: 10.1007/bf00789185

Google Scholar

[8] Y.V. Frolov and A.N. Pivkina: Fizika Goreniya i Vzryva Vol. 33(5) (1997), pp.3-19.

Google Scholar

[9] S. Hwang, A. S. Mukasyan, A.S. Rogachev and A. Varma: Combust. Sci. Tech. Vol. 123 (1997), pp.165-183.

Google Scholar

[10] A.G. Merzhanov, A.N. Peregudov and V.T. Gontkovskaya: Doklady Akademii Nauk Vol. 360(2) (1998), pp.217-219.

Google Scholar

[11] A.S. Rogachev and A.G. Merzhanov: Doklady Akademii Nauk Vol. 365(6) (1999), pp.788-791.

Google Scholar

[12] Y.S. Naiborodenko, V.I. Itin and K.V. Savitskii: Powder. Metall. Met. Ceram. Vol. 7(91) (1970), p.562.

Google Scholar

[13] Z.A. Munir and J.B. Holt: J. Mater. Sci. Vol. 22 (1987), p.710.

Google Scholar

[14] Z.A. Munir: Am. Ceram. Bull. Vol. 67(2) (1988), p.342.

Google Scholar

[15] Z.A. Munir and U. Anselmi-Tamburini: Mater. Sci. Reports Vol. 3 (1989), p.277.

Google Scholar

[16] F. Booth: Trans. Farad. Soc. Vol. 49 (1953), p.272.

Google Scholar

[17] J.D. Walton and N.E. Poulos: J. Am. Ceram. Soc. Vol. 42(1) (1959), p.40.

Google Scholar

[18] B. Lewis and G. von Elbe: J. Chem. Phys. Vol. 2, (1934), pp.537-544.

Google Scholar

[19] Y.B. Zeldovich and D.A. Frank-Kamenetsky: Zh. Fiz. Khim. Mosk Vol. 12, (1938), pp.100-111.

Google Scholar

[20] B. Zeldovich: Zh. Eksp. Teor. Fiz. Vol. 12, (1942), pp.498-503.

Google Scholar

[21] A.G. Merzhanov: Combust. Flame Vol. 13 (1969), pp.143-156.

Google Scholar

[22] A.G. Merzhanov and A.E. Averson: Combust. Flame Vol. 16 (1971), pp.89-124.

Google Scholar

[23] J. Puszynski, J. Degreve and V. Hlavacek: Ind. Eng. Chem. Res. Vol. 26 (1987), pp.1424-1434.

DOI: 10.1021/ie00067a026

Google Scholar

[24] A. Varma, G. Cao and M. Morbidelli: AIChE J. Vol. 36 (1990), pp.1032-1038.

Google Scholar

[25] A.K. Bhattacharya: Ceram. Eng. Sci. Proc. Vol. 12(9 -10) (1991), pp.1697-1722.

Google Scholar

[26] Z.A. Munir: J. Mater. Syn. Proc. Vol. 1 (1993), pp.387-394.

Google Scholar

[27] C. He and G. Stangle: J. Mater. Res. Vol. 13(1) (1998), pp.135-145.

Google Scholar

[28] H.P. Li: Acta Mater. Vol. 51 (2003), pp.3213-3224.

Google Scholar

[29] M.G. Lakshmikantha, A. Bhattacharys and J.A. Sekhar: Metall. Trans. A Vol. 23A (1992), p.23.

Google Scholar

[30] V. Subramanian, M.G. Lakshmikantha and J.A. Sekhar: J. Mater. Res. Vol. 10 (1995), p.1235.

Google Scholar

[31] H.P. Li: Scripta Mater. Vol. 50(7) (2004), pp.999-1002.

Google Scholar

[32] H.P. Li: Metall. Mater. Trans. A Vol. 34(9) (2003), p.1969-(1978).

Google Scholar

[33] G.K. Dey, A. Arya and J.A. Sekhar: J. Mater. Res. Vol. 15 (2000), p.63.

Google Scholar

[34] W.C. Lee and S. L. Chung: J. Mater. Sci. Vol. 30 (1995), p.1487.

Google Scholar

[35] P. Shen, Z.X. Guo, J.D. Hu, J.S. Lian and B.Y. Sun: Scripta Mater. Vol. 43(10) (2000), pp.893-898.

Google Scholar

[36] N. Bertolino, M. Monagheddu, A. Tacca, P. Giuliani, C. Zanotti and U.A. Tamburini: Intermetallics Vol. 11(1) (2003), pp.41-49.

DOI: 10.1016/s0966-9795(02)00128-0

Google Scholar

[37] C. He, G.C. Stangle: J. Mater. Res. Vol. 13 (1998), pp.135-145.

Google Scholar

[38] C. Deidda, F. Delogu, F. Maglia, U. Anselmi-Tamburini and G. Cocco: Vol. 375-377 (2004), pp.800-803.

DOI: 10.1016/j.msea.2003.10.025

Google Scholar

[39] S. Dong, P. Hou, H. Cheng, H. Yang, and G. Zou: J. Phys. Conden. Matter Vol. 14(44) (2002), pp.11023-11030.

Google Scholar

[40] E.M. Hunt, K.B. Plantier and M.L. Pantoya: Acta Mater. Vol. 52(11) (2004), pp.3183-3191.

Google Scholar

[41] H.P. Li and J.A. Sekhar: J. Mater. Res. Vol. 8(10) (1993), p.2515.

Google Scholar

[42] D. Stong and D. Clark: Ceram. Inter. Vol. 30 (2004), p. (1909).

Google Scholar

[43] E.A. Brandes and G.B. Brook: Smithells Metals Reference Book (Butterworth-Heinemann Ltd., 1992).

Google Scholar

[44] T.S. Azatyan, V.M. Mal'tsev, A. G. Merzhanov and V. A. Seleznev: Fiz. Goreniya Vzryva, Vol. 16(2) (1980), p.37.

Google Scholar

[45] G.V. Samsonov and I. M. Vinitskii: Handbook of Refractory Compounds (IFI/Plenum, New York, NY, 1980).

Google Scholar