Mechanical, Thermal and Oxidation Behaviour of Zirconium Diboride Based Ultra-High Temperature Ceramic Composites

Article Preview

Abstract:

A comparative study has been carried out on the mechanical properties at room temperature, thermal shock and ablation resistance as well as oxidation behaviour of ZrB2-20SiC, ZrB2-20SiC-5Si3N4 and ZrB2-20ZrC-20SiC-5Si3N4 (amounts represent volume percent) composites. Fracture toughness has been determined using either three-point bend tests on single edge notch bend specimens, or by indentation technique. Addition of Si3N4 as sintering aid leads to enhancement in flexural strength and fracture toughness in the composite without ZrC. The specimens were subjected to thermal shock by quenching from temperatures in the range of 800o- 1200oC to ice cold water, and to ablation by exposure to oxy-acetylene flame at 2200oC. The composite having ZrC as constituent, exhibits the highest resistance to damage due to thermal shock and ablation, while the ZrB2-SiC composite shows the least change in mass during ablation. On the other hand, thermogravimetric experiments from room temperature to 1300oC have shown that the presence of ZrC is detrimental for oxidation resistance. Hence, the constituents of the composites need to be selected on the basis of the nature of application. The results of this study show that the investigated ZrB2 based composites bear the potential for multiple use thermal protection of reentry type space vehicles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-68

Citation:

Online since:

October 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, D. T. Ellerby: Key Eng. Mater. Vol. 264 (2004), p.493.

Google Scholar

[2] Federick Monteverde, Stefano Guicciardi and Alida Bellosi: Mater. Sci. Eng. Vol. A346 (2003), p.310.

Google Scholar

[3] Stanley R Levine, Elizabeth J. Opila, Michael C. Halbig, James D. Kiser, Mrityunjay Singh and Jonathan A. Salem: J. Eur. Ceram. Soc. Vol. 22 (2002), p.2757.

Google Scholar

[4] Mark M. Opeka, Inna G. Talmy, Eric. J. Wuchina, James A. Jaykoski, and Samuel J. Causey: J. Eur. Ceram. Soc. Vol. 19 (1999), p.2405.

Google Scholar

[5] Federick Monteverde: Comp. Sci. Tech. Vol. 65(11-12) (2005), p.1869.

Google Scholar

[6] W. G. Fahrenholtz, G. E. Hilmas, A. L. Chamberlain and J. W. Zimmermann: J. Mater. Sci. Vol. 39 (2004), p.5951.

Google Scholar

[7] Sumin Zhu, W.G. Fahrenholtz, G.E. Hilmas: J. Eur. Ceram. Soc. Vol. 27 (2007), p. (2077).

Google Scholar

[8] Xinghong Zhang, Lin Xu, Shanyi Du, Jiecai Han, Ping Hu, Wenbo Han: Mater. Lett, in press.

Google Scholar

[9] Alireza Rezaie, William G. Fahrenholtz, Gregory E. Hilmas, J. Eur. Ceram. Soc. Vol. 27 (2007), p.2495.

Google Scholar

[10] E. V. Clougherty, D. Kalish and E. T. Peters: Airforce Materials Laboratory Technical Report AFML-TR-68-190, Wright-Patterson Airforce Materials Laboratory, Dayton, OH, USA (1968).

Google Scholar

[11] Federic Monteverde and Alida Bellosi: Scripta Mater. Vol. 46 (2002), p.223.

Google Scholar

[12] Jeffrey Bull, Michael J. White, and Larry Kaufman: US Patent 5, 750, 450. (1998).

Google Scholar

[13] R. E. Loehman: Industrial Heating, January 11 (2004).

Google Scholar

[14] ASTM C 1259-01, Annual book of ASTM standards, section 15, American Society for Testing and Materials, Philadelphia, PA, USA (2001).

Google Scholar

[15] ASTM E 399-83, Annual book of ASTM standards, section 3, p.500, American Society for Testing and Materials, Philadelphia, PA, USA (1990).

Google Scholar

[16] ASTM C 1161-94, Annual book of ASTM standards, pp.309-15, American Society for Testing and Materials, Philadelphia, PA, USA (1996).

Google Scholar

[17] K. Nihara, R. Morena, D.P.H. Hasselman, in: Brittle Matrix Composites 2, R.C. Bradt, D.P.H. Hasselman, F.F. Lange (Eds. ), Elsevier Applied Science, New York (1983), p.84.

Google Scholar

[18] G. Fargas, D. Casellas, L. Llanes, and M. Anglada: J. Eur. Ceram. Soc. Vol. 23 (2003), p.107.

Google Scholar

[19] Pernilla Petterson, Mats Johnsson: J. Eur. Ceram. Soc. Vol. 23 (2003), p.309.

Google Scholar

[20] ShuQin Li, Yong Huang, YongMing Luo, ChangAn Wang, CuiWei Li: Mater. Lett. Vol. 57 (2003), p.1670.

Google Scholar

[21] R. Telle, L. S . Sigl and K. Takagi, in: Handbook of Ceramic Hard Materials, edited by R. Riedel, Wiley-VCH, Weinheim (2000), p.803.

Google Scholar

[22] M.E. Fine: Scripta Metall. Vol. 15 (1981), p.523.

Google Scholar

[23] M.S. Zedalias, M.V. Ghate and M.E. Fine: Scripta Metall. Vol. 19 (1985), p.647.

Google Scholar

[24] R. Mitra and Y.R. Mahajan: Bull. Mater. Sci. Vol. 18(4) (1995), p.405.

Google Scholar

[25] P.L. Swanson, C.J. Fairbanks, B.R. Lawn, Y. -W. Mai, and B.J. Hockey: J. Am. Ceram. Soc., Vol. 70 (4) (1987), p.279.

Google Scholar

[26] Information available on http: /www. azom. com/details. asp?ArticleID=261.

Google Scholar

[27] Charles C. Sorrell, Vladimir S. Stubican, Richard C. Bradt: J. Am. Ceram. Soc., Vol. 69(4) (1986), p.317.

Google Scholar

[28] Tsuchida Takeshi, Yamamoto Satoshi: J. Mater. Sci., Vol. 42(3) (2007), p.772.

Google Scholar