Cytotoxicity and Adhesion Evaluation of Nanothickness Ca/P-Based Bioceramics Coated Titanium

Article Preview

Abstract:

Incorporation of bioceramics on the surface of dental implants has been utilized in an attempt to increase biological response of bone to materials. This paper reports the in vitro biological evaluation of Ca/P-based nanothickness bioceramic coated alumina-blasted/acid-etched titanium implants (AB/AE nanotite implant) and compare its performance to the untreated and uncoated implants, Ca/P-based nanothickness bioceramic coated untreated implants (untreated nanotite implant), alumina-blasted/acid-etched titanium implants (AB/AE implant) and hydroxyapatite plasma-sprayed implants (PSHA Implant). Balb/c 3T3 fibroblasts were used to asses the cytocompatibility of implant materials according to ISO-10993-5 protocols. Osteoblasts from Balb/c femurs seeded onto different implant surfaces showed the effect of surface topography and chemistry on cell adhesion. The results showed that all implants were not cytotoxic and that PSHA and AB/AE nanotite implants favored osteoblasts adhesion.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 396-398)

Pages:

319-322

Citation:

Online since:

October 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Buser, N. Broggini, M. Wieland, R. K. Schenk, A. J. Denzer, D. L. Cochran, B. Hoffmann, A. Lussi and S. G. Steinemann: J. Dent Res Vol 83 (2004), pp.318-24.

DOI: 10.1177/154405910408300704

Google Scholar

[2] A. Ince, N. Schutze, C. Hendrich, R. Thull, J. Eulert and J. F. Loh: J Arthroplasty (2008) Feb 27. [Epub ahead of print].

Google Scholar

[3] H. Q. Nguyen, D. A. Deporter, R. M. Pilliar, N. Valiquette and R. Yakubovich: Biomaterials Vol. 25 (2004), p.865.

Google Scholar

[4] C. Chenglin, Z. Jingchuan, Y. Zhongda and L. Pinghua: Mater. Sci. Eng. Vol. A 316 (2001), p.205.

Google Scholar

[5] ISO 10993-5. Biological evaluation of medical devices. art 5: Tests for cytotoxicity: In vitro methods. International Organization for Standardization. Geneva(1999).

Google Scholar

[6] C. Yusuf: Biotechnol. Adv Vol. 24 (2006), p.352.

Google Scholar

[7] Y. Tamaki, K. Sasaki, A. Sasaki, Y. Takakubo, H. Hasegawa, T. Ogino, Y.T. Konttinen, J. Salo and M. Takagi: J Biomed Mater Res B Appl Biomater Vol. 84 (2008), pp.191-204.

DOI: 10.1002/jbm.b.30861

Google Scholar

[8] T.A. Schildhauer, E. Peter, G. Muhr and M. Köller: J Biomed Mater Res A. (2008) Feb 19.

Google Scholar

[9] R. Lenz, W. Mittelmeier, D. Hansmann, R. Brem, P. Diehl, A. Fritsche and R. Bader: J Biomed Mater Res A. (2008) Apr 22. [Epub ahead of print].

Google Scholar

[10] S. Makihira, Y. Mine, E. Kosaka and H. Nikawa: Titanium surface roughness accelerates RANKL-dependent differentiation in the osteoclast precursor cell line, RAW264. 7. Dent Mater J. 2007 Sep; 26(5): 739-45.

DOI: 10.4012/dmj.26.739

Google Scholar

[11] H. Zeng, J. Du, Q. Zeng, Y. Liu and X. Guo. J Tongji Med Univ Vol 19 (1999), pp.131-4.

Google Scholar

[12] K. Kieswetter, Z. Schwartz, T.W. Hummert, D.L. Cochran, J., D.D. Dean and et al: J Biomed Mater ResVol. 32 (1996), pp.55-63.

Google Scholar

[13] K. Anselme and M. Bigerelle: J Mater Sci Mater Med. 17 (2006), pp.471-9.

Google Scholar

[14] F. Lüthen, R. Lange, P. Becker, J. Rychly, U. Beck and J.G. Nebe: Biomaterials 26 (2005), pp.2423-40.

Google Scholar

[15] P.M., J. Harle, V. Salih, R., I. Olsen, F.H. and M. Tonetti: Bone 35 (2004), pp.124-33.

Google Scholar

[16] M. Wiedmann-Al-Ahmad, R. Gutwald, N.C. Gellrich, U. Hubner, and R. Schmelzeisen: J Mater Sci Mater Med Vol. 16 (2005), pp.57-66.

DOI: 10.1007/s10856-005-6447-z

Google Scholar