Polyurethane Foams Behaviour. Experiments versus Modeling

Article Preview

Abstract:

. Polyurethane foam materials are widely used as cores in sandwich composites, for packing and cushioning. The main characteristics of foams are light weight, high porosity, high crushability and good energy absorption capacity. The paper presents the experimental results obtained for the mechanical properties of polyurethane foams in different loading conditions and the influence of impregnation on the mechanical properties. A 200 kg/m3 density polyurethane foam was investigated in the experimental program in three different Strength of Materials laboratories from Lublin, Bucharest and Timisoara. The paper assesses the possibility to describe the polyurethane foam behaviour trough compression tests, micromechanical models and Finite Element Analysis (FEA). The micromechanical models and Finite Element Analysis could be used successfully for representing the engineering stress – strain behaviour if the compression tests provide reliable material parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-130

Citation:

Online since:

October 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.J. Gibson, M.F. Ashby: Cellular Solids. Structure and properties (Cambridge University Press, Cambridge, 1997).

Google Scholar

[2] G. M. Viana, L.A. Carlsson: Journal of Sandwich Structures and Materials, 4 (2002), p.99.

Google Scholar

[3] Z. H. Tu, V. P. M. Shim, C.T. Lim: International Journal of Solids and Structures, 38 (2001), p.9267.

Google Scholar

[4] J. -M. Berthelot, E. Lolive: Journal of Sandwich Structures and Materials, 4 (2002), p.219.

Google Scholar

[5] H. -R. Lin: Polymer Testing, 16 (1997), p.429.

Google Scholar

[6] F. Saint-Michel, L. Chazeau, J. -Y. Cavaille, E. Chabert: Composites Science and Technology, 66 (2006), p.2700.

Google Scholar

[7] F. Saint-Michel, L. Chazeau, J. -Y. Cavaille: Composites Science and Technology, 66 (2006), p.2709.

Google Scholar

[8] F. Ramsteiner, N. Fell, S. Forster: Polymer Testing, 20 (2001), p.661.

Google Scholar

[9] Q. -M. Li, R. A. W. Mines, R. S. Birch: International Journal of Solids and Structures, 37 (2000), p.6321.

Google Scholar

[10] L. Marsavina, T. Sadowski, D. M. Constantinescu, R. Negru, Key Engineering Materials, 385387 (2008) p.205.

Google Scholar

[11] L. Marsavina, T. Sadowski, R. Negru, M. Knec, in: Nonlinear Dynamics of Composite and Smart Structures, edited by J. Warminski, M. P. Cartmell, J. Latalski, Proceedings of Euromech Colloquium 498, Lublin (2008).

Google Scholar

[12] M. Avalle, G. Belingardi, A. Ibba: International Journal of Impact Engineering 34 (2007), p.3.

Google Scholar

[13] Q. Liu, B. O'Toole: Journal of Materials Processing Technology, 191 (2007), p.73.

Google Scholar

[15] N. J. Mills, H. X. Zhu: Journal of the Mechanics and Physics of Solids, 47 (1999), p.669.

Google Scholar

[16] H. X. Zhu, N. J. Mills, J. F. Knott: Journal of the Mechanics and Physics of Solids, 45 (1997), p.1875.

Google Scholar

[17] N. J. Mills: Polymer foam handbook (Elsevier, Amsterdam, 2007).

Google Scholar

[18] Y. Masso-Moreu, N. J. Mills: International Journal of Impact Engineering 28 (2003), p.653.

Google Scholar

[19] A. Gilchrist, N.J. Mills: International Journal of Impact Engineering 25 (2001), p.767.

Google Scholar

[20] Information on http: /www. matweb. com.

Google Scholar

[21] ABAQUS Analysis User's Manual, Version 6. 6, ABAQUS Inc. (2006).

Google Scholar