[1]
S. Jahanmir, M. Ramulu, P. Koshy: Machining of Ceramics and Composites, New York, Marcel Dekker, (1999).
Google Scholar
[2]
Marinescu, H.K. Tonshöff and I. Inasaki: Handbook of Ceramic Grinding and Polishing, Noyes Publications/William Andrew Publishing LLC, New York, (2000).
Google Scholar
[3]
I. Inasaki: Grinding of Hard and Brittle Materials, Annals of CIRP, Vol. 36 (1987), p.463471.
DOI: 10.1016/s0007-8506(07)60748-3
Google Scholar
[4]
S. Malkin, and T.W. Hwang: Grinding Mechanisms for Ceramics. Annals of CIRP, Vol. 45 (1996), pp.569-580.
DOI: 10.1016/s0007-8506(07)60511-3
Google Scholar
[5]
H.K. Tonshöff, T. Lierse, and I. Inasaki: Grinding of Advanced Ceramics, in Machining of Ceramics and Composites, ed. S. Jahanmir, M. Ramulu and P. Koshy, New York: Marcel Dekker, 1999, pp.855-118.
Google Scholar
[6]
H.H.K. Xu, and S. Jahanmir: Microstructure and Material Removal in Scratching of Alumina, Journal of Materials Science, Vol. 30 (1995), pp.2335-2247.
Google Scholar
[7]
T.W. Hwang and S. Malkin: Grinding Mechanisms and Energy Balance for Ceramics, Transaction of ASME: Journal of Manufacturing Science and Engineering, Vol. 121 (1999), pp.623-631.
DOI: 10.1115/1.2833081
Google Scholar
[8]
S. Kohli, C. Guo and S. Malkin: Energy Partition to the Workpiece for Grinding with Aluminum Oxide and CBN Abrasive Wheels, Transactions of the ASME: Journal of Engineering for Industry, Vol. 117 (1995), pp.160-168.
DOI: 10.1115/1.2803290
Google Scholar
[9]
T.G. Bifano, T.A. Dow and R.O. Scattergood: Ductile-regime: a New Technology for Machining Brittle Materials, Transaction of ASME: Journal of Engineering for Industry, Vol. 113 (1991), pp.184-189.
DOI: 10.1115/1.2899676
Google Scholar
[10]
K.L. B1aedel, I.S. Taylor and C.J. Evans: Ductile-regime Grinding of Brittle Materials, in Machining of Ceramics and Composites, ed. S. Jahanmir, M. Ramulu and P. Koshy, New York: Marcel Dekker, 1999, pp.139-176.
Google Scholar
[11]
A.G. Evans and D.B. Marshall: Wear Mechanisms in Ceramics, Fundamental of Friction and Wear of Materials, ed. D.A. Rigney, Metals Park, Ohio, American Society for Metals, 1981, pp.439-452.
Google Scholar
[12]
R. Komandury: On the Material Removal Mechanisms in Finishing of Advanced Ceramics and Glasses, Annals of C1RP, Vol. 45 (1996), pp.509-513.
Google Scholar
[13]
X.P. Xu: Experimental Study on Temperatures and Energy Partition at the DiamondGranite Interface in Grinding, Tribology International, Vol. 34 (2001), pp.419-426.
DOI: 10.1016/s0301-679x(01)00039-1
Google Scholar
[14]
Y. Ichida, and K. Kishi: Nanotopography of Ultraprecise Ground Surface of Fine Ceramics Using Atomic Force Microscope, Annals of CIRP, Vol. 42 (1993), pp.647-650.
DOI: 10.1016/s0007-8506(07)62529-3
Google Scholar
[15]
S. Jahanmir, H.H.K. XU and L.K. Ives: Mechanisms of Materials Removal in Abrasive Machining, in Machining of Ceramics and Composites, eds. S. Jahanmir, M. Ramulu, P. Koshy, New York: Marcel Dekker, 1999, pp.11-84.
Google Scholar
[16]
F. Klocke, E. Brinksmeier, C. Evans, T. Howes, I. Inasaki, E. Minke, H.K. Tonshöff, J.A. Webster and D. Stuff: High Speed Grinding - Fundamentals and State of the Art in Europe, Japan and the USA, Annals of CIRP, Vol. 46 (1997), pp.715-724.
DOI: 10.1016/s0007-8506(07)91100-2
Google Scholar
[17]
F. Klocke. E. Verlemann and C. Schippers: High-Speed Grinding of Ceramics, in Machining of Ceramics and Composites, ed. S. Jahanmir, M. Ranlulu, P. Koshy, New York: Marcel Dekker, 1999, pp.119-138.
Google Scholar
[18]
J. Kajornchaiyakul: Abrasive Machining of Ceramics: Assessment of "ear-Surface Characteristics in High Speed Grinding, PhD Thesis. University of Connecticut, (2000).
Google Scholar
[19]
Inasaki. High Efficiency Grinding of Advanced ceramics, Annals of CIRP, Vol. 35 (1986), pp.211-214.
DOI: 10.1016/s0007-8506(07)61872-1
Google Scholar
[20]
T.W. Hwang, C.J. Evans and S. Malkin: An Investigation of High Speed Grinding with Electroplated Diamond Wheels, Annals of CIRP, Vol. 49 (2000), pp.245-248.
DOI: 10.1016/s0007-8506(07)62938-2
Google Scholar
[21]
T.W. Hwang, C.J. Evans and S. Malkin: High Speed Grinding of Silicon Nitride with Electroplated Diamond Wheels, Part 2: Wheel Topography and Grinding Mechanisms, Transaction of ASME: Journal of Manufacturing Science and Engineering, Vol. 122 (2000).
DOI: 10.1115/imece1999-0702
Google Scholar
[22]
K. Ramesh, S.H. Yeo, S. Gowri and L. Zhou: Experimental Evaluation of Super High Speed Grinding of Advanced Ceramics, Journal of Advanced Manufacturing Technology, Vol. 17 (2001), pp.87-92.
DOI: 10.1007/s001700170196
Google Scholar
[23]
K. Inoue, Y. Sakai, K. Ono and Y. Watanabe: Super High Speed Grinding for Ceramics with Vitrified Diamond Wheel, International Journal of Japan Society for Precision Engineering, Vol. 28 (1994), pp.344-345.
Google Scholar
[24]
L. Yin and H. Huang: Ceramic Response to High Speed Grinding, Machining Science and Technology, Vol. 8 (2004), pp.21-37.
DOI: 10.1081/mst-120034240
Google Scholar
[25]
H. Huang, L. Yin and L. Zhou: High Speed Grinding of Silicon Nitride with Resin Bond Diamond Wheels, Journal of Materials Processing Technology, Vol. 141 (2003), pp.329-336.
DOI: 10.1016/s0924-0136(03)00284-x
Google Scholar
[26]
H. Huang and L. Yin: Grinding Characteristics of Engineering Ceramics in High Speed Regime, International Journal of Abrasive Technology, Vol. 1 (2007), pp.78-93.
DOI: 10.1504/ijat.2007.013850
Google Scholar
[27]
L. Yin, H. Huang, K. Ramesh and T. Huang: High Speed Versus Conventional Grinding in High Removal Rate Machining of Alumina and Alumina-Titania, International Journal of Machine Tools and Manufacture, Vol. 45 (2005), pp.897-907.
DOI: 10.1016/j.ijmachtools.2004.10.016
Google Scholar
[28]
J.A. Kovach, S. Srinivasan, P.J. Blau. B. Bandyopadhyay, S. Malkin and K. Ziegler: A Feasibility Investigation of High Speed, Low Damage Grinding for Advanced Ceramics, Proceedings of the 5th International Grinding Conference, Society of Manufacturing Engineers, Cincinnati, Ohio, 1993, MR93-352.
DOI: 10.2172/755533
Google Scholar
[29]
H. Huang, Machining Characteristics and Surface Integrity of Yttria Stabilized Tetragonal Zirconia in High Speed Deep Grinding, Materials Science and Engineering A, Vol. 345 (2003), pp.155-163.
DOI: 10.1016/s0921-5093(02)00466-5
Google Scholar
[30]
H. Huang and Y.C. Liu. Experimental Investigations of Machining Characteristics and Removal Mechanisms of Advanced Ceramics in High Speed Deep Grinding, International Journal of Machine Tools & Manufacture, Vol. 43 (2003), pp.811-823.
DOI: 10.1016/s0890-6955(03)00050-6
Google Scholar
[31]
G.Z. Xie, H.W. Huang, H. Huang, X.M. Sheng, H.Q. Mi and W. Xiong: Experimental Investigations of Advanced Ceramics in High Efficiency Deep Grinding, Chinese Journal of Mechanical Engineering, Vol. 43 (2007), pp.176-184.
DOI: 10.3901/jme.2007.01.176
Google Scholar
[32]
F. Klocke and A. Baus: Coolant Induced Forces in CBN High Speed Grinding with Shoe Nozzles, Annals of CIRP, Vol. 49 (2000), pp.241-244.
DOI: 10.1016/s0007-8506(07)62937-0
Google Scholar
[33]
H. Huang, S. Kanno, X.D. Liu and Z.M. Gong: Highly Integrated and Automated High Speed Grinding System for Printer Heads Constructed by Combination Materials, International Journal of Advanced Manufacturing Technology, Vol. 25 (2005), pp.1-9.
DOI: 10.1007/s00170-003-1866-9
Google Scholar
[34]
K. Ramesh, H. Huang and L. Yin: Analytical and Experimental Investigation of Coolant Velocity in High Speed Grinding, International Journal of Machine Tools and Manufacture, Vol. 44 (2004), pp.1069-1076.
DOI: 10.1016/j.ijmachtools.2004.02.017
Google Scholar
[35]
A.D. Batako, W.B. Rowe and M.N. Morgan: Temperature Measurement in High Efficiency Deep Grinding, International Journal of Machine Tools & Manufacture, Vol. 45 (2005), pp.1231-1245.
DOI: 10.1016/j.ijmachtools.2005.01.013
Google Scholar
[36]
W.B. Rowe: Thermal Analysis of High Efficiency Deep Grinding, International Journal of Machine Tools & Manufacture, Vol. 41 (2001), pp.1-19.
DOI: 10.1016/s0890-6955(00)00074-2
Google Scholar
[37]
W.B. Rowe and T. Jin: Temperatures in High Efficiency Deep Grinding, Annals of the CIRP, Vol. 50 (2001), pp.205-208.
DOI: 10.1016/s0007-8506(07)62105-2
Google Scholar
[38]
T. Jin, W.B. Rowe and D. McCormack: Temperatures in Deep Grinding of Finite Workpieces, International Journal of Machine Tools & Manufacture. Vol. 42 (2002), pp.53-59.
DOI: 10.1016/s0890-6955(01)00094-3
Google Scholar
[39]
T. Jin and G.Q. Cai, Analytical Thermal Model of Oblique Moving Heat Source for Deep Grinding and Cutting, Transaction of ASME, Journal of Manufacturing Science and Engineering, Vol. 123 (2001), pp.185-190.
DOI: 10.1115/1.1343458
Google Scholar
[40]
G.Z. Xie and H. Huang: An Experimental Investigation of Temperature in High Speed Deep Grinding of Partially Stabilized Zirconia, International Journal of Machine Tool and Manufacture, (2008) doi: 10. 1016/j. ijmachtools. 2008. 06. 002.
DOI: 10.1016/j.ijmachtools.2008.06.002
Google Scholar
[41]
H.H.K. Xu and S. Jahanmir, Simple technique for observing subsurface damage in machining of ceramics, Journal of American Ceramic Society, 77 (1994), 1388-1390.
DOI: 10.1111/j.1151-2916.1994.tb05424.x
Google Scholar
[42]
A.G. Evans and D.B. Marshall: Wear Mechanisms in Ceramics, in Fundamental of Friction and Wear of Materials, ed. D.A. Rigney, Metals Park, Ohio: American Society for Metals, 1981, pp.439-452.
Google Scholar
[43]
H. Huang: Effect of Truing/Dressing Intensity on Truing/Dressing Efficiency and Grinding Performance of Vitrified Diamond Wheels, Journal of Materials Processing Technology, Vol. 117 (2001), pp.9-14.
DOI: 10.1016/s0924-0136(01)01004-4
Google Scholar
[44]
H. Huang, Z.T. Shang, H.Q. Mi, X.M. Sheng, S.Q. Wang, Y. Wu and G.Z. Xie: The Closed Ytype Nozzle for Ultrahigh Speed Grinding China Patent, CN200520052869. 7.
Google Scholar
[45]
Z.T. Shang, H. Huang, Q. Tang and S.H. Yin: Coolant Effect on Grinding Performance in High Speed Deep Grinding of 40Cr steel, Journal of Metal Finishing, Vol. 106 (2008), p.1621.
DOI: 10.1016/s0026-0576(08)80120-1
Google Scholar