High Speed Grinding of Advanced Ceramics: A Review

Article Preview

Abstract:

In this paper, the characteristics of high speed grinding of advanced ceramics, including alumina, alumina-titania, zirconia, silicon nitride and silicon carbide, were reviewed. The associated material removal mechanisms were discussed. Pragmatic technologies for the high speed grinding of advanced ceramics were also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-22

Citation:

Online since:

January 2009

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Jahanmir, M. Ramulu, P. Koshy: Machining of Ceramics and Composites, New York, Marcel Dekker, (1999).

Google Scholar

[2] Marinescu, H.K. Tonshöff and I. Inasaki: Handbook of Ceramic Grinding and Polishing, Noyes Publications/William Andrew Publishing LLC, New York, (2000).

Google Scholar

[3] I. Inasaki: Grinding of Hard and Brittle Materials, Annals of CIRP, Vol. 36 (1987), p.463471.

DOI: 10.1016/s0007-8506(07)60748-3

Google Scholar

[4] S. Malkin, and T.W. Hwang: Grinding Mechanisms for Ceramics. Annals of CIRP, Vol. 45 (1996), pp.569-580.

DOI: 10.1016/s0007-8506(07)60511-3

Google Scholar

[5] H.K. Tonshöff, T. Lierse, and I. Inasaki: Grinding of Advanced Ceramics, in Machining of Ceramics and Composites, ed. S. Jahanmir, M. Ramulu and P. Koshy, New York: Marcel Dekker, 1999, pp.855-118.

Google Scholar

[6] H.H.K. Xu, and S. Jahanmir: Microstructure and Material Removal in Scratching of Alumina, Journal of Materials Science, Vol. 30 (1995), pp.2335-2247.

Google Scholar

[7] T.W. Hwang and S. Malkin: Grinding Mechanisms and Energy Balance for Ceramics, Transaction of ASME: Journal of Manufacturing Science and Engineering, Vol. 121 (1999), pp.623-631.

DOI: 10.1115/1.2833081

Google Scholar

[8] S. Kohli, C. Guo and S. Malkin: Energy Partition to the Workpiece for Grinding with Aluminum Oxide and CBN Abrasive Wheels, Transactions of the ASME: Journal of Engineering for Industry, Vol. 117 (1995), pp.160-168.

DOI: 10.1115/1.2803290

Google Scholar

[9] T.G. Bifano, T.A. Dow and R.O. Scattergood: Ductile-regime: a New Technology for Machining Brittle Materials, Transaction of ASME: Journal of Engineering for Industry, Vol. 113 (1991), pp.184-189.

DOI: 10.1115/1.2899676

Google Scholar

[10] K.L. B1aedel, I.S. Taylor and C.J. Evans: Ductile-regime Grinding of Brittle Materials, in Machining of Ceramics and Composites, ed. S. Jahanmir, M. Ramulu and P. Koshy, New York: Marcel Dekker, 1999, pp.139-176.

Google Scholar

[11] A.G. Evans and D.B. Marshall: Wear Mechanisms in Ceramics, Fundamental of Friction and Wear of Materials, ed. D.A. Rigney, Metals Park, Ohio, American Society for Metals, 1981, pp.439-452.

Google Scholar

[12] R. Komandury: On the Material Removal Mechanisms in Finishing of Advanced Ceramics and Glasses, Annals of C1RP, Vol. 45 (1996), pp.509-513.

Google Scholar

[13] X.P. Xu: Experimental Study on Temperatures and Energy Partition at the DiamondGranite Interface in Grinding, Tribology International, Vol. 34 (2001), pp.419-426.

DOI: 10.1016/s0301-679x(01)00039-1

Google Scholar

[14] Y. Ichida, and K. Kishi: Nanotopography of Ultraprecise Ground Surface of Fine Ceramics Using Atomic Force Microscope, Annals of CIRP, Vol. 42 (1993), pp.647-650.

DOI: 10.1016/s0007-8506(07)62529-3

Google Scholar

[15] S. Jahanmir, H.H.K. XU and L.K. Ives: Mechanisms of Materials Removal in Abrasive Machining, in Machining of Ceramics and Composites, eds. S. Jahanmir, M. Ramulu, P. Koshy, New York: Marcel Dekker, 1999, pp.11-84.

Google Scholar

[16] F. Klocke, E. Brinksmeier, C. Evans, T. Howes, I. Inasaki, E. Minke, H.K. Tonshöff, J.A. Webster and D. Stuff: High Speed Grinding - Fundamentals and State of the Art in Europe, Japan and the USA, Annals of CIRP, Vol. 46 (1997), pp.715-724.

DOI: 10.1016/s0007-8506(07)91100-2

Google Scholar

[17] F. Klocke. E. Verlemann and C. Schippers: High-Speed Grinding of Ceramics, in Machining of Ceramics and Composites, ed. S. Jahanmir, M. Ranlulu, P. Koshy, New York: Marcel Dekker, 1999, pp.119-138.

Google Scholar

[18] J. Kajornchaiyakul: Abrasive Machining of Ceramics: Assessment of "ear-Surface Characteristics in High Speed Grinding, PhD Thesis. University of Connecticut, (2000).

Google Scholar

[19] Inasaki. High Efficiency Grinding of Advanced ceramics, Annals of CIRP, Vol. 35 (1986), pp.211-214.

DOI: 10.1016/s0007-8506(07)61872-1

Google Scholar

[20] T.W. Hwang, C.J. Evans and S. Malkin: An Investigation of High Speed Grinding with Electroplated Diamond Wheels, Annals of CIRP, Vol. 49 (2000), pp.245-248.

DOI: 10.1016/s0007-8506(07)62938-2

Google Scholar

[21] T.W. Hwang, C.J. Evans and S. Malkin: High Speed Grinding of Silicon Nitride with Electroplated Diamond Wheels, Part 2: Wheel Topography and Grinding Mechanisms, Transaction of ASME: Journal of Manufacturing Science and Engineering, Vol. 122 (2000).

DOI: 10.1115/imece1999-0702

Google Scholar

[22] K. Ramesh, S.H. Yeo, S. Gowri and L. Zhou: Experimental Evaluation of Super High Speed Grinding of Advanced Ceramics, Journal of Advanced Manufacturing Technology, Vol. 17 (2001), pp.87-92.

DOI: 10.1007/s001700170196

Google Scholar

[23] K. Inoue, Y. Sakai, K. Ono and Y. Watanabe: Super High Speed Grinding for Ceramics with Vitrified Diamond Wheel, International Journal of Japan Society for Precision Engineering, Vol. 28 (1994), pp.344-345.

Google Scholar

[24] L. Yin and H. Huang: Ceramic Response to High Speed Grinding, Machining Science and Technology, Vol. 8 (2004), pp.21-37.

DOI: 10.1081/mst-120034240

Google Scholar

[25] H. Huang, L. Yin and L. Zhou: High Speed Grinding of Silicon Nitride with Resin Bond Diamond Wheels, Journal of Materials Processing Technology, Vol. 141 (2003), pp.329-336.

DOI: 10.1016/s0924-0136(03)00284-x

Google Scholar

[26] H. Huang and L. Yin: Grinding Characteristics of Engineering Ceramics in High Speed Regime, International Journal of Abrasive Technology, Vol. 1 (2007), pp.78-93.

DOI: 10.1504/ijat.2007.013850

Google Scholar

[27] L. Yin, H. Huang, K. Ramesh and T. Huang: High Speed Versus Conventional Grinding in High Removal Rate Machining of Alumina and Alumina-Titania, International Journal of Machine Tools and Manufacture, Vol. 45 (2005), pp.897-907.

DOI: 10.1016/j.ijmachtools.2004.10.016

Google Scholar

[28] J.A. Kovach, S. Srinivasan, P.J. Blau. B. Bandyopadhyay, S. Malkin and K. Ziegler: A Feasibility Investigation of High Speed, Low Damage Grinding for Advanced Ceramics, Proceedings of the 5th International Grinding Conference, Society of Manufacturing Engineers, Cincinnati, Ohio, 1993, MR93-352.

DOI: 10.2172/755533

Google Scholar

[29] H. Huang, Machining Characteristics and Surface Integrity of Yttria Stabilized Tetragonal Zirconia in High Speed Deep Grinding, Materials Science and Engineering A, Vol. 345 (2003), pp.155-163.

DOI: 10.1016/s0921-5093(02)00466-5

Google Scholar

[30] H. Huang and Y.C. Liu. Experimental Investigations of Machining Characteristics and Removal Mechanisms of Advanced Ceramics in High Speed Deep Grinding, International Journal of Machine Tools & Manufacture, Vol. 43 (2003), pp.811-823.

DOI: 10.1016/s0890-6955(03)00050-6

Google Scholar

[31] G.Z. Xie, H.W. Huang, H. Huang, X.M. Sheng, H.Q. Mi and W. Xiong: Experimental Investigations of Advanced Ceramics in High Efficiency Deep Grinding, Chinese Journal of Mechanical Engineering, Vol. 43 (2007), pp.176-184.

DOI: 10.3901/jme.2007.01.176

Google Scholar

[32] F. Klocke and A. Baus: Coolant Induced Forces in CBN High Speed Grinding with Shoe Nozzles, Annals of CIRP, Vol. 49 (2000), pp.241-244.

DOI: 10.1016/s0007-8506(07)62937-0

Google Scholar

[33] H. Huang, S. Kanno, X.D. Liu and Z.M. Gong: Highly Integrated and Automated High Speed Grinding System for Printer Heads Constructed by Combination Materials, International Journal of Advanced Manufacturing Technology, Vol. 25 (2005), pp.1-9.

DOI: 10.1007/s00170-003-1866-9

Google Scholar

[34] K. Ramesh, H. Huang and L. Yin: Analytical and Experimental Investigation of Coolant Velocity in High Speed Grinding, International Journal of Machine Tools and Manufacture, Vol. 44 (2004), pp.1069-1076.

DOI: 10.1016/j.ijmachtools.2004.02.017

Google Scholar

[35] A.D. Batako, W.B. Rowe and M.N. Morgan: Temperature Measurement in High Efficiency Deep Grinding, International Journal of Machine Tools & Manufacture, Vol. 45 (2005), pp.1231-1245.

DOI: 10.1016/j.ijmachtools.2005.01.013

Google Scholar

[36] W.B. Rowe: Thermal Analysis of High Efficiency Deep Grinding, International Journal of Machine Tools & Manufacture, Vol. 41 (2001), pp.1-19.

DOI: 10.1016/s0890-6955(00)00074-2

Google Scholar

[37] W.B. Rowe and T. Jin: Temperatures in High Efficiency Deep Grinding, Annals of the CIRP, Vol. 50 (2001), pp.205-208.

DOI: 10.1016/s0007-8506(07)62105-2

Google Scholar

[38] T. Jin, W.B. Rowe and D. McCormack: Temperatures in Deep Grinding of Finite Workpieces, International Journal of Machine Tools & Manufacture. Vol. 42 (2002), pp.53-59.

DOI: 10.1016/s0890-6955(01)00094-3

Google Scholar

[39] T. Jin and G.Q. Cai, Analytical Thermal Model of Oblique Moving Heat Source for Deep Grinding and Cutting, Transaction of ASME, Journal of Manufacturing Science and Engineering, Vol. 123 (2001), pp.185-190.

DOI: 10.1115/1.1343458

Google Scholar

[40] G.Z. Xie and H. Huang: An Experimental Investigation of Temperature in High Speed Deep Grinding of Partially Stabilized Zirconia, International Journal of Machine Tool and Manufacture, (2008) doi: 10. 1016/j. ijmachtools. 2008. 06. 002.

DOI: 10.1016/j.ijmachtools.2008.06.002

Google Scholar

[41] H.H.K. Xu and S. Jahanmir, Simple technique for observing subsurface damage in machining of ceramics, Journal of American Ceramic Society, 77 (1994), 1388-1390.

DOI: 10.1111/j.1151-2916.1994.tb05424.x

Google Scholar

[42] A.G. Evans and D.B. Marshall: Wear Mechanisms in Ceramics, in Fundamental of Friction and Wear of Materials, ed. D.A. Rigney, Metals Park, Ohio: American Society for Metals, 1981, pp.439-452.

Google Scholar

[43] H. Huang: Effect of Truing/Dressing Intensity on Truing/Dressing Efficiency and Grinding Performance of Vitrified Diamond Wheels, Journal of Materials Processing Technology, Vol. 117 (2001), pp.9-14.

DOI: 10.1016/s0924-0136(01)01004-4

Google Scholar

[44] H. Huang, Z.T. Shang, H.Q. Mi, X.M. Sheng, S.Q. Wang, Y. Wu and G.Z. Xie: The Closed Ytype Nozzle for Ultrahigh Speed Grinding China Patent, CN200520052869. 7.

Google Scholar

[45] Z.T. Shang, H. Huang, Q. Tang and S.H. Yin: Coolant Effect on Grinding Performance in High Speed Deep Grinding of 40Cr steel, Journal of Metal Finishing, Vol. 106 (2008), p.1621.

DOI: 10.1016/s0026-0576(08)80120-1

Google Scholar