A Focused Review on Enhancing the Abrasive Waterjet Cutting Performance by Using Controlled Nozzle Oscillation

Article Preview

Abstract:

Increasing the performance of the abrasive waterjet (AWJ) cutting technology for engineering materials is the ultimate aim of research in this field. This paper presents a review on the studies using a controlled nozzle oscillation technique to increase the cutting performance of the AWJ cutting technology and the associated mechanisms primarily based on the work in the author’s laboratory. Primary attention is paid to the discussions of the depth of cut, the effect and selection of process parameters and the advantages by using this technique in both single- and multi-pass cutting modes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-44

Citation:

Online since:

January 2009

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.A. van Luttervelt: On the Selection of Manufacturing Methods Illustrated by an Overview of Separation Techniques for Sheet Materials, Annals of CIRP, Vol. 38 (1989), pp.587-607.

DOI: 10.1016/s0007-8506(07)61127-5

Google Scholar

[2] J. Wang: Abrasive Waterjet Machining of Engineering Materials (Trans Tech Publications, Uetikon-Zuerich, Switzerland 2003).

Google Scholar

[3] E. Siores, W.C.K. Wong, L. Chen and J.G. Wager: Enhancing Abrasive Waterjet Cutting of Ceramics by Head Oscillation Techniques, Annals of CIRP, Vol. 45 (1996), pp.215-218.

DOI: 10.1016/s0007-8506(07)63073-x

Google Scholar

[4] J. Zeng and T.J. Kim: Material Removal of Polycristalline Ceramics by a High Pressure Abrasive Water jet - an SEM Study, Int. J. Water Jet Technol., Vol. 1 (1991), pp.65-71.

Google Scholar

[5] A.W. Momber, L. Eusch and R. Kovacevic: Machining Refractory Ceramics with Abrasive Waterjet, J. Mater. Sci., Vol. 31 (1996), pp.6485-6493.

DOI: 10.1007/bf00356252

Google Scholar

[6] M. Hashish and M. Hilleke: Waterjet Machining of Composites and Ceramics, in: Machining of Ceramics and Composites, Eds: S. Jahanmir, M. Ramulu and P. Koshy (Marcel Dekker, New York 1999), pp.427-482.

Google Scholar

[7] J. Wang, T. Kuriyagawa and C.Z. Huang: An Experimental Study to Enhance the Cutting Performance in Abrasive Waterjet Machining, Machining Science and Technology, Vol. 7 (2003), pp.191-207.

DOI: 10.1081/mst-120022777

Google Scholar

[8] J. Wang and D.M. Guo: The Cutting Performance in Multipass Abrasive Waterjet Machining of Industrial Ceramics, J. Mater. Proc. Technol., Vol. 133 (2003), pp.371-377.

DOI: 10.1016/s0924-0136(02)01125-1

Google Scholar

[9] S. Xu and J. Wang: A Study of Abrasive Waterjet Cutting of Alumina Ceramics with Controlled Nozzle Oscillation, Int. J. Adv. Manuf. Technol., Vol. 27 (2006), pp.693-702.

DOI: 10.1007/s00170-004-2256-7

Google Scholar

[10] J. Wang and H. Liu: Profile Cutting on Alumina Ceramics by Abrasive Waterjet. I. Experimental Investigation. Proc. Instn. Mech. Engrs., Part C: Journal of Mechanical Engineering Science, Vol. 220 (2006), pp.703-714.

DOI: 10.1243/09544062jmes207a

Google Scholar

[11] J. Wang and H. Liu: Profile Cutting on Alumina Ceramics by Abrasive Waterjet. II. Cutting Performance Models. Proc. Instn. Mech. Engrs., Part C: Journal of Mechanical Engineering Science, Vol. 220 (2006), pp.715-725.

DOI: 10.1243/09544062jmes207b

Google Scholar

[12] J. Wang: Predictive Depth of Jet Penetration Models for Abrasive Waterjet Cutting of Alumina Ceramics, Int. J. Mech. Sci., Vol. 49 (2007), pp.306-316.

DOI: 10.1016/j.ijmecsci.2006.09.005

Google Scholar

[13] D. Arola. and M. Ramulu: A Study of Kerf Characteristics in Abrasive Waterjet Machining of Graphite/Epoxy Composite, J. Eng. Mater. Technol., Vol. 118 (1996), pp.256-265.

DOI: 10.1115/1.2804897

Google Scholar

[14] G. Hamatani and M. Ramulu: Machinability of High Temperature Composites by Abrasive Waterjet, J. Eng. Mater. Technol., Vol. 112 (1990), pp.381-386.

DOI: 10.1115/1.2903346

Google Scholar

[15] M. Hashish: Advances in Composite Machining with Abrasive-Waterjets, Processing and Manufacturing of Composite Materials, PED-Vol. 49/MD-Vol. 27 (1991), pp.93-111.

Google Scholar

[16] J. Wang: Abrasive Waterjet Machining of Polymer Matrix Composites: Cutting Performance, Erosive Analysis and Predictive Models, Int. J. Adv. Manuf. Technol., Vol. 15 (1999), pp.757-768.

DOI: 10.1007/s001700050129

Google Scholar

[17] J. Wang: A Machinability Study of Polymer Matrix Composites Using Abrasive Waterjet Cutting Technology, J. Mater. Proc. Technol., Vol. 94 (1999), pp.30-35.

DOI: 10.1016/s0924-0136(98)00443-9

Google Scholar

[18] J. Wang: The Erosive Process in Abrasive Waterjet Cutting of Polymer Matrix Composites, Acta Metallurgca Sinica, Vol. 12 (1999), pp.880-885.

Google Scholar

[19] D.K. Shanmugam, T. Nguyen and J. Wang: A Study of Delamination on Graphite/Epoxy Composites in Abrasive Waterjet Machining, Composites Part A, Vol. 39 (2008), pp.923-929.

DOI: 10.1016/j.compositesa.2008.04.001

Google Scholar

[20] A.W. Momber and R. Kovacevic: Principles of Abrasive Water Jet Machining (Springer-Verlag, London 1998).

DOI: 10.1007/978-1-4471-1572-4_5

Google Scholar

[21] R. Kovacevic, M. Hashish, R. Mohan, M. Ramulu, T.J. Kim and E.S. Geskin: State of the Art of Research and Development in Abrasive Waterjet Machining, ASME Journal of Manufacturing Science and Engineering, Vol. 119 (1997), pp.776-785.

DOI: 10.1115/1.2836824

Google Scholar

[22] M. Hashish: A Modelling Study of Metal Cutting with Abrasive Waterjets. J. Eng. Mater. Technol., Vol. 106 (1984), pp.88-100.

DOI: 10.1115/1.3225682

Google Scholar

[23] J.G.A. Bitter: A Study of Erosion Phenomena: Part I, Wear Vol. 6 (1963), pp.5-21.

Google Scholar

[24] I. Finnie: The Mechanism of Erosion of Ductile Metals, Proc. 3rd National Congress of Applied Mechanics, ASME (1958), pp.527-532.

Google Scholar

[25] M. Hashish and M.P. Du Plessis: Prediction Equations Relating High Velocity Jet Cutting Performance to Standoff Distance and Multipasses. J. Eng. Ind. Vol. 101 (1979), pp.311-318.

DOI: 10.1115/1.3439512

Google Scholar

[26] H-T. Liu, P. Miles and S.D. Veenhuizen: CFD and Physical Modelling of UHP AWJ Drilling. Proc. 14th Int. Conf. on Jetting Technology, Brugge, Belgium (1998), pp.15-24.

Google Scholar

[27] H. Liu, J. Wang, R. Brown and N. Kelson: CFD Simulation and Mathematical Models of the Abrasive Waterjet Characteristics, Proc. Int. Conf. Advanced Materials and Processing Technologies (AMPT2003), Dublin, Ireland (2003), pp.337-340.

Google Scholar

[28] H. Liu, J. Wang, N. Kelson and R. Brown: A Study of Abrasive Waterjet Characteristics by CFD Simulation, J. Mater. Proc. Technol., Vol. 153-154 (2004), pp.488-493.

DOI: 10.1016/j.jmatprotec.2004.04.037

Google Scholar

[29] T. Nguyen, D.K. Shanmugam and J. Wang: Effect of Liquid Properties on the Stability of an Abrasive Waterjet, Int. J. Mach. Tools Manufact., Vol. 48 (2008), pp.1138-1147.

DOI: 10.1016/j.ijmachtools.2008.01.009

Google Scholar

[30] M. Hashish: Characteristics of Surfaces Machined with Abrasive Waterjets. J. Eng. Mater. Technol., Vol. 113 (1991), pp.354-362.

DOI: 10.1115/1.2903418

Google Scholar

[31] M. Hashish: Effect of Beam Angle in Abrasive-Waterjet Machining, J. Eng. Ind., Vol. 115 (1993), pp.51-56.

DOI: 10.1115/1.2901638

Google Scholar

[32] J. Wang and W.C.K. Wong: A Study on Abrasive Waterjet Cutting of Metallic Coated Sheet Steels, Int. J. Mach. Tools Manufact., Vol. 39 (1999), pp.855-870.

DOI: 10.1016/s0890-6955(98)00078-9

Google Scholar

[33] R.J. Wilkins and E. Graham: An Erosion Model for Waterjet Cutting, J. Eng. Ind. Vol. 115 (1993), pp.57-61.

Google Scholar

[34] L. Chen, E. Siores and W.C.K. Wong: Kerf Characteristics in Abrasive Waterjet Cutting of Ceramic Materials, Int. J. Mach. Tools Manufact., Vol. 36 (1996), pp.1201-1206.

DOI: 10.1016/0890-6955(95)00108-5

Google Scholar

[35] J. Wang and D.M. Guo: A Predictive Depth of Penetration Model for Abrasive Waterjet Cutting of Polymer Matrix Composites, J. Mater. Proc. Technol., Vol. 121 (2002), pp.390-394.

DOI: 10.1016/s0924-0136(01)01246-8

Google Scholar

[36] A.A. El-Domiaty and A.A. Abdel-Rahman: Fracture Mechanics-based Model of Abrasive Watejet Cutting for Brittle Materials, Int. J. Adv. Mnauf. Technol., Vol. 13 (1997), pp.192-181.

DOI: 10.1007/bf01305869

Google Scholar

[37] S. Paul, A.M. Hoogstrate, C.A. van Luttervelt and J.J. Kales: Energy Partitioning in Elastro-Plastic Impact by Sharp Abrasive Particles in the Abrasive Water Jet Machining of arittle Materials, J. Mater. Proc. Technol., Vol. 73 (1998).

DOI: 10.1016/s0924-0136(97)00229-x

Google Scholar

[38] J. Zeng and T.J. Kim: Development of Abrasive Waterjet Kerf Cutting Model for Brittle Materials, Proc. 11th Int. Conf. on Jet Cutting Technology, Bedford, UK (1992), pp.483-501.

DOI: 10.1007/978-94-011-2678-6_33

Google Scholar

[39] M. Hashish, D.E. Steele and D.H. Bothell: Machining with Super-Pressure (690 MPa) Waterjets, Int. J. Mach. Tools Manufact., Vol. 37 (1997), pp.465-479.

DOI: 10.1016/s0890-6955(96)00016-8

Google Scholar

[40] M. Hashish: Precision Cutting of Thick Materials with AWJ, Proc. 17th Int. Conf. Water Jetting, Mainz Germany (2005), pp.33-45.

Google Scholar

[41] J. Wang: The Effect of Jet Impact Angle on the Cutting Performance in AWJ Machining of Alumina Ceramics, Key Engineering Materials, Vol. 238-239 (2003), pp.117-122.

DOI: 10.4028/www.scientific.net/kem.238-239.117

Google Scholar

[42] E. Lemma, L. Chen and E. Siores and J. Wang: Optimising the AWJ Cutting Process of Ductile Materials Using Nozzle Oscillation Technique, Int. J. Mach. Tools Manufact., Vol. 42 (2002), pp.781-789.

DOI: 10.1016/s0890-6955(02)00017-2

Google Scholar

[43] J. Wang and S. Xu: Enhancing the AWJ Cutting Performance by Multipass Machining with Controlled Nozzle Oscillation, Key Engineering Materials, Vols. 291-292 (2005), pp.453-458.

DOI: 10.4028/www.scientific.net/kem.291-292.453

Google Scholar

[44] J. Wang: Techniques for Enhancing the Performance of AWJ Machining, Key Engineering Materials, Vols. 257-258 (2004), pp.521-526.

Google Scholar

[45] H.T. Zhu, C.Z. Huang, J. Wang, Y.X. Feng and R.G. Hou: Theoretical Analysis on the Machining Mechanism in Ultrasonic Vibration Abrasive Waterjet, Key Engineering Materials, Vols. 315-316 (2006), pp.127-130.

DOI: 10.4028/www.scientific.net/kem.315-316.127

Google Scholar

[46] J. Chao and E.S. Geskin: Experimental Study of the Striation Formation and Spectral Analysis of the Abrasive Water Jet Generated Surfaces. Proc. 7th American Water Jet Conference, Seattle (1993), pp.27-41.

Google Scholar

[47] L. Chen, J. Wang, E. Lemma and E. Siores: Striation Formation Mechanisms on the Jet Cutting Surface, J. Mater. Proc. Technol., Vol. 141 (2003), pp.213-218.

DOI: 10.1016/s0924-0136(02)01120-2

Google Scholar

[48] E.M. Veltrup: Application of Oscillating Nozzles for Cutting and Cleaning, Proc. 3rd Int. Symp. Jet Cutting Technol., Chicago (1976), pp. C1-1/C1-13.

Google Scholar

[49] E. Lemma, L. Chen, E. Siores and J. Wang: Study of Cutting Fiber-reinforced Composites by Using Abrasive Water-jet With Cutting Head Oscillation, Composite Structures, Vol. 57 (2002), pp.297-303.

DOI: 10.1016/s0263-8223(02)00097-1

Google Scholar

[50] L. Chen, E. Siores and W.C.K. Wong: Optimising Abrasive Waterjet Cutting of Ceramic Materials, J. Mater. Proc. Technol., Vol. 74 (1998), pp.261-254.

DOI: 10.1016/s0924-0136(97)00278-1

Google Scholar