Experimental Research of High Performance Concrete with Multi-Elements Mineral Admixtures

Article Preview

Abstract:

Performing the superposition effect of multi-elements mineral admixtures, high performance concrete (HPC) with 3% of silicon fume, 20% of fly ash and 40% of ground granulated blast-furnace slag (GGBS) was prepared, and its physical and mechanical properties and durability were studied systematically. The compressive strength and tensile strength of HPC are better than those of ordinary concrete. HPC has high compactness with smaller gas diffusion coefficient and relative permeability coefficient. Adding volume stabilizer and controlling the contents of SO3 in the GGBS and volume stabilizer at 3%, can reduce dry shrinkages effectively. Large mount of mineral admixture was used to make the concentrations of K+ and Na+ in the pore solution and the expansion caused by alkali-silica reaction depress greatly. So the alkali-silica reaction gets controlled markedly. The effective diffusion coefficient of chloride ion is 1.96×10-12 m2/s, which means HPC has a favorable chloride ion penetration resistance. After 15 times of wet-dry cycle, the rates of the rust area and quality loss of the reinforcing steel bars in HPC are only 4.1% and 0.05% respectively, so HPC has better performance of steel protection. The mortar bar did not expand in corrosive sodium sulfate solution, and it means HPC has better performance of sulfate resistance. The performances of frost resistance and carbonation resistance of HPC are also favorable. It’s proved in tests that the superposition effect of multi-elements mineral admixtures can enhance the physical and mechanical properties and durability of concrete greatly.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 405-406)

Pages:

24-29

Citation:

Online since:

January 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] MANGAT P.S., MOLLOY B.T.: Materials and Structures vol. 27 (1994), pp.338-346.

Google Scholar