Fractography of Dynamic Crack Propagation in Silicon Crystal

Article Preview

Abstract:

The phenomena occurring during rapid crack propagation in brittle single crystals were studied by cleaving silicon specimens on the low energy cleavage planes under tensile and bending. The experiments revealed new phenomena not previously reported, and new crack path instabilities in particular. The well defined boundary conditions of the tested specimens and crack velocity measurements enabled rationalization of the observed phenomena and the velocity-surface instabilities relationship in particular. In contrast to amorphous materials, the observed instabilities are generated at relatively low velocity, while at high velocity the crack path remains stable. No evidences for mirror, mist, and hackle instabilities, typical in amorphous materials, were found.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-64

Citation:

Online since:

March 2009

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Griffith: Mech. Eng. A Vol. 221 (1920), p.163.

Google Scholar

[2] A.N. Stroh: Phil. Mag. Supp. Vol. 6 (1957), p.418.

Google Scholar

[3] H. Wallner: Z. Physik Vol. 114 (1939), p.368.

Google Scholar

[4] E.H. Andrews: J. Appl. Phys. Vol. 30 (1959), p.740.

Google Scholar

[5] K. Ravichandar and W.G. Knauss: Int. J. Frac. Vol. 26 (1984), p.65.

Google Scholar

[6] J. Fineberg, S.P. Gross, M. Marder and H.L. Swinney: Phys. Rev. Lett. Vol. 67 (1991), p.457.

Google Scholar

[7] S.P. Gross, J. Fineberg, M. Marder, W.D. McCormick and H. L. Swinney: Phys. Rev. Lett. Vol. 71 (1993), p.3162.

DOI: 10.1103/physrevlett.71.3162

Google Scholar

[8] K. Ravichandar: Int. J. Fract. Vol. 90 (1998), p.83.

Google Scholar

[9] R.J. Jaccodine: J. Electrochem. Soc. Vol. 110 (1963), p.524.

Google Scholar

[10] G. Michot: Surf. Sci. Vol. 186 (1987), p. L561.

Google Scholar

[11] J.C.H. Spence, Y.M. Huang and O. Sankey: Acta Metal. Mater. Vol. 41 (1993), p.2815.

Google Scholar

[12] R. Pérez and P. Gumbsch: Acta Mater. Vol. 48 (2000), p.4517.

Google Scholar

[13] N. Bernstein and D.W. Hess: Phys. Rev. Lett. Vol. 91, 2003. No. 025501.

Google Scholar

[14] I. Be'ery, U. Lev and D. Sherman: J. Appl. Phys. Vol. 93 (2003), p.2429.

Google Scholar

[15] D. Sherman and I. Be'ery: J. Mat. Res. Vol. 18 (2003), p.2379.

Google Scholar

[16] D. Sherman: J. Mech. Phys. Solids Vol. 53 (12) (2005), p.2742.

Google Scholar

[17] D. Sherman and I. Be'ery: Phys. Rev. Let. Vol. 80 (1998), p.540.

Google Scholar

[18] D. Sherman, M. Markovitz and O. Barkai: J. Mech. Phys. Solids Vol. 56 (2) (2008), p.376.

Google Scholar

[19] B. Lawn: Fracture of Brittle Solids. Cambridge University Press, Cambridge, 1993, UK.

Google Scholar

[20] J.A. Hauch, D. Holland, M. Marder and H. Swinney: Phys. Rev. Lett. Vol. 82 (1999), p.3823.

Google Scholar

[21] D. Sherman and I. Be'ery: J. Mech. Phys. Solids Vol. 52 (2004), p.1743.

Google Scholar

[22] K. Sauthoff, M. Wenderoth, A.J. Heinrich, M.A. Rosentreter, K.J. Engel, T.C.G. Reusch and R.G. Ulbrich: Phys. Rev. B Vol. 60 (1999), p.4789.

DOI: 10.1103/physrevb.60.4789

Google Scholar

[23] J.R. Kermode, T. Albaret, D. Sherman, N. Bernstein, P. Gumbsch, M.C. Payne, G. Cs´anyi, and A. De Vita: Nature Vol. 455 (2008), p.1224.

DOI: 10.1038/nature07297

Google Scholar