Aqueous Electrophoretic Deposition at High Electric Fields

Article Preview

Abstract:

From an environmental, safety and economic perspective water should be the solvent of choice for electrophoretic deposition under industrial circumstances. However, because of the electrolytic decomposition of water under the influence of direct current, the majority of EPD is carried out in non-aqueous solvents. In this work, experiments prove that deposits can be obtained from aqueous alumina suspensions while avoiding electrolysis of the medium by using unbalanced alternating current fields [1]. In addition it is shown that the formed deposits have a green density which is intrinsically higher than those formed by traditional DC EPD from ethanol based suspensions. A theoretical basis for both electrophoretic deposition by means of unbalanced alternating fields and the higher density of deposits formed by application of such fields is provided.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

June 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Neirinck, J. Vleugels, J. Fransaer and O. Van der Biest, Patent U.S. patent pending (2008).

Google Scholar

[2] R. C. Hayward, D. A. Saville and I. A. Aksay: Nature Vol. 404 (2000), p.56.

Google Scholar

[3] T. Uchikoshi, K. Ozawa, B. D. Hatton and Y. Sakka: J. Mater. Res. Vol. 16 (2001), p.321.

Google Scholar

[4] Sakurada: J. Ceram. Soc. Jpn. Vol. 112 (2004), p.156.

Google Scholar

[5] J. Tabellion and R. Clasen: J. Mater. Sci. Vol. 39 (2004), p.803.

Google Scholar

[6] J. Zeiner and R. Clasen: Key Eng. Mater. Vol. 314 (2006), p.57.

Google Scholar

[7] Y. Hirata, A. Nishimoto and Y. Ishihara: J. Ceram. Soc. Jpn. Vol. 99 (1991), p.108.

Google Scholar

[8] A. S. Dukhin and S. S. Dukhin: Electrophoresis Vol. 26 (2005), p.2149.

Google Scholar

[9] S. Stotz: J. Colloid Interf. Sci. Vol. 65 (1978), p.118.

Google Scholar

[10] M. Wien: Ann. Phys. Vol. 5 (1929), p.400.

Google Scholar

[11] J. P. Hoare: The electrochemistry of oxygen (John Wiley & Sons Inc., New York 1968).

Google Scholar

[12] B. E. Conway: Electrochemical data (Elsevier publishing company, Amsterdam 1952).

Google Scholar

[13] G. Anné, B. Neirinck, K. Vanmeensel, O. Van der Biest and J. Vleugels: J. Am. Ceram. Soc. Vol. 89 (2006), p.823.

DOI: 10.4028/www.scientific.net/kem.314.187

Google Scholar

[14] G. Anné, B. Neirinck, K. Vanmeensel, O. Van der Biest and J. Vleugels: Key Eng. Mater. Vol. 314 (2006), p.187.

DOI: 10.4028/www.scientific.net/kem.314.187

Google Scholar

[15] L. Stappers, L. Zhang, O. Van der Biest and J. Fransaer: 3rd International Conference on Electrophoretic Deposition: Fundamentals and Applications, Vol. (2008), p.

Google Scholar

[16] Y. Solomentsev, M. Bohmer and J. L. Anderson: Langmuir Vol. 13 (1997), p.6058.

Google Scholar

[17] J. A. Fagan, P. J. Sides and D. C. Prieve: Langmuir Vol. 21 (2005), p.1784.

Google Scholar

[18] W. D. Ristenpart, I. A. Aksay and D. A. Saville: J. Fluid Mech. Vol. 575 (2007), p.83.

Google Scholar

[19] W. D. Ristenpart, I. A. Aksay and D. A. Saville: Langmuir Vol. 23 (2007), p.4071.

Google Scholar