Aqueous Electrophoretic Deposition at High Electric Fields

Abstract:

Article Preview

From an environmental, safety and economic perspective water should be the solvent of choice for electrophoretic deposition under industrial circumstances. However, because of the electrolytic decomposition of water under the influence of direct current, the majority of EPD is carried out in non-aqueous solvents. In this work, experiments prove that deposits can be obtained from aqueous alumina suspensions while avoiding electrolysis of the medium by using unbalanced alternating current fields [1]. In addition it is shown that the formed deposits have a green density which is intrinsically higher than those formed by traditional DC EPD from ethanol based suspensions. A theoretical basis for both electrophoretic deposition by means of unbalanced alternating fields and the higher density of deposits formed by application of such fields is provided.

Info:

Periodical:

Edited by:

A. R. Boccaccini, O. van der Biest, R. Clasen, T. Uchikoshi

Pages:

33-38

DOI:

10.4028/www.scientific.net/KEM.412.33

Citation:

B. Neirinck et al., "Aqueous Electrophoretic Deposition at High Electric Fields", Key Engineering Materials, Vol. 412, pp. 33-38, 2009

Online since:

June 2009

Export:

Price:

$38.00

[1] B. Neirinck, J. Vleugels, J. Fransaer and O. Van der Biest, Patent U.S. patent pending (2008).

[2] R. C. Hayward, D. A. Saville and I. A. Aksay: Nature Vol. 404 (2000), p.56.

[3] T. Uchikoshi, K. Ozawa, B. D. Hatton and Y. Sakka: J. Mater. Res. Vol. 16 (2001), p.321.

[4] Sakurada: J. Ceram. Soc. Jpn. Vol. 112 (2004), p.156.

[5] J. Tabellion and R. Clasen: J. Mater. Sci. Vol. 39 (2004), p.803.

[6] J. Zeiner and R. Clasen: Key Eng. Mater. Vol. 314 (2006), p.57.

[7] Y. Hirata, A. Nishimoto and Y. Ishihara: J. Ceram. Soc. Jpn. Vol. 99 (1991), p.108.

[8] A. S. Dukhin and S. S. Dukhin: Electrophoresis Vol. 26 (2005), p.2149.

[9] S. Stotz: J. Colloid Interf. Sci. Vol. 65 (1978), p.118.

[10] M. Wien: Ann. Phys. Vol. 5 (1929), p.400.

[11] J. P. Hoare: The electrochemistry of oxygen (John Wiley & Sons Inc., New York 1968).

[12] B. E. Conway: Electrochemical data (Elsevier publishing company, Amsterdam 1952).

[13] G. Anné, B. Neirinck, K. Vanmeensel, O. Van der Biest and J. Vleugels: J. Am. Ceram. Soc. Vol. 89 (2006), p.823.

[14] G. Anné, B. Neirinck, K. Vanmeensel, O. Van der Biest and J. Vleugels: Key Eng. Mater. Vol. 314 (2006), p.187.

DOI: 10.4028/www.scientific.net/kem.314.187

[15] L. Stappers, L. Zhang, O. Van der Biest and J. Fransaer: 3rd International Conference on Electrophoretic Deposition: Fundamentals and Applications, Vol. (2008), p.

[16] Y. Solomentsev, M. Bohmer and J. L. Anderson: Langmuir Vol. 13 (1997), p.6058.

[17] J. A. Fagan, P. J. Sides and D. C. Prieve: Langmuir Vol. 21 (2005), p.1784.

[18] W. D. Ristenpart, I. A. Aksay and D. A. Saville: J. Fluid Mech. Vol. 575 (2007), p.83.

[19] W. D. Ristenpart, I. A. Aksay and D. A. Saville: Langmuir Vol. 23 (2007), p.4071.

In order to see related information, you need to Login.