Electrophoretic Deposition of Titania Nanopowders

Article Preview

Abstract:

Titania Nanopowders were successfully deposited on stainless steel sheet by means of electrophoretic deposition method from titania suspension in which isopropanol was employed as a solvent and Triethanolamine as a dispersant. The effect of TEA addition on the stability of nanopowders in suspensions was examined by sedimentation test; in addition, Malvern zeta sizer was employed for determination their particle size. Electrophoretic Deposition was done at different deposition conditions of voltage (5-20 volts) and time (5-60 sec) and the scanning electron microscopy (SEM) was used to investigate the effect of suspension composition and deposition parameters on the microstructure of coatings. Furthermore, the effect of deposition parameters on the consistencies of different coatings was analyzed by Scanning Probe Microscope (SPM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

June 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.J. Choi, Z. Seeley, A. Bandyopadhay, S. Bose, S. A. Akbar: Sensors and Actuators B: Chemical, Vol. 124 (2007), p.111.

Google Scholar

[2] L.Q. Nguyen, C. Salim, H. Hinode: Applied Catalysis A: General, Vol. 347 (2008), p.94.

Google Scholar

[3] T. Aarth, G. Madras : Catalysis Communications, Vol. 9 (2008), p.630.

Google Scholar

[4] J. Verran, G. Sandoval, N.S. Allen, M. Edge, J. Stratton: Dyes and Pigments, Vol. 73 (2007), p.298.

Google Scholar

[5] T. Kokubo, T. Matsushita, H. Takadama: Journal of the European Ceramic Society, Vol 27 (2007), p.1553.

Google Scholar

[6] H. Yun, J. Li, H. Chen, C. Lin : Electrochimica Acta, Vol. 52 (2007), p. 6679D.

Google Scholar

[7] J. Wei, J. Yao, X. Zhang, W. Zhu, H. Wang, M.J. Rhodes : Materials Letters, Vol. 61 (2007), p.4610.

Google Scholar

[8] A.B. Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E. Mariani, C. Villa : Journal of the American Ceramic Society, Vol. 88 (2005).

DOI: 10.1111/j.1551-2916.2005.00474.x

Google Scholar

[9] Y. Zhang, W. Fu, H. Yang, Q. Qi, Y. Zeng, T. Zhang, R. Ge, G. Zou: Applied Surface Science, Vol. 254 (2008), p.5545.

Google Scholar

[10] L. Francioso, A.M. Taurino, A. Ferteo, P. Siciliano: Sensors and Actuators B: Chemical, Vol. 130 (2008), p.70.

Google Scholar

[11] K. Katagiri, T. Suzuki, H. Muto, M. Sakai, A. Matsuda: Colloids and Surfaces A : Physicochemical and Engineering Aspects, Vol. 321 (2008), p.233.

DOI: 10.1016/j.colsurfa.2007.11.028

Google Scholar

[12] W. Chen, J. Zhang, Q. Fang, S. Li, J. Wu, F. Li, K. Jiang: Sensors and Actuators B: Chemical, Vol. 100 (2004), p.195.

Google Scholar

[13] Y. Fukada, N. Nagarajan, W. Makky, Y. Boa, H.S. Kim: Vol. 39 (2004), p.287.

Google Scholar

[14] P. Sarkar, P.S. Nicholson: Journal of American Ceramic Society, Vol. 79 (1996), p. (1987).

Google Scholar

[15] A.R. Boccaccini, J. Zhitomirsky: Current Opinion in Solid State and Materials Science, Vol. 6 (2002), p.251.

Google Scholar

[16] S.J. Limmer, T.P. Chou, G.Z. Cao: Journal of Sol-Gel Science and Technology, Vol. 36 (2005), p.183.

Google Scholar

[17] A.R. Boccaccini, J.A. Roether, B.J.C. Thomas, M.S.P. Shaffer: Journal of the Ceramic Society of Japan, Vol. 114 (2006), p.1.

Google Scholar

[18] I. Zhitomirsky: Advances in Colloid and Interface Science, Vol. 97 (2002), p.279.

Google Scholar

[19] J.A. Lewis: Journal of American Ceramic Society, Vol. 83 (2000), p.2341.

Google Scholar

[20] X.F. Xiao, R.F. Liu: Materials Letters, Vol. 60 (2006), p.2627.

Google Scholar

[21] J. Widegren, L. Bergstrom: Journal of the European Ceramic Society, Vol. 20 (2000), p.659.

Google Scholar

[22] R. Zhou, Y. Chen, Y. Liang, F. Zheng, J. Li: Ceramics International, Vol. 28 (2002), p.705.

Google Scholar

[23] J.H. Yum, S.S. Kim, D.Y. Kim, Y.E. Sung: Journal of Photochemistry and Photobiology A: Chemistry, Vol. 173 (2005), p.1.

Google Scholar