Fabrication and Characterization of Perovskite SrZrO3 Ceramics through a Combustion Technique

Article Preview

Abstract:

Perovskite SrZrO3 ceramics were successfully prepared via a combustion technique. The effect of calcination temperatures (900-1400oC) and sintering temperatures (1400-1650oC) on phase and morphology evolution of perovskite SrZrO3 ceramics were studied. The highest purity of perovskite phase powder was obtained at 1250 oC and the purity of the perovskite phase of SrZrO3 ceramics were detected in the samples sintered at 1550 oC for 6 h. The SEM results showed the average particle size (84-214 nm) and the average grain size (0.35-2.09 µm) of samples increased with the increase of firing temperatures. The shrinkage of the ceramics increased as the sintering temperatures increased. The maximum density was ~98.4% of the theoretical density for the sample sintered at 1550 oC for 6 h.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Pages:

223-226

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. A. Slonimskaya and A. V. Belyakov, Glass Ceram., 58 (2001), p.54.

Google Scholar

[2] T. Yajima, H. Suzuki, T. Yoyo and H. Iwahara, Solid State Ion., 51 (1992), p.101.

Google Scholar

[3] T. Osaka, C. Numako and K. koto, Res. Bull., 34 (1999), p.11.

Google Scholar

[4] E. K. Keler and A. K. Kuzestor, Zh. Prikl Khim, 34 (1961), p.2146.

Google Scholar

[5] M. Rajendran and M. Subba Rao, J. Mater. Res., 12 (1997), p.2665.

Google Scholar

[6] T. R. N. Kutty, R. Vivekanandan and S. Philip, J. Mater. Sci., 25 (1990), p.3649.

Google Scholar

[7] C. J. Brinker and G. W. Scherer, The Physics and Chemistry of Sol-Gel Processing, Sol- Gel Science - Academic Press, New York, (1990).

Google Scholar

[8] M. S. Wu and T. T. Fang, Mater. Chem. Phys., 37 (1994), p.278.

Google Scholar

[9] M. M. Lencka, E. Nielsen, A. Anderko and R. E. Riman, Chem. Mater., 9 (1997), p.1116.

Google Scholar

[10] F. Boschini, B. Robertz, A. Rulmont and R. Cloots, J. Eur. Ceram. Soc., 23 (2003), p.3035.

Google Scholar

[11] A. Thongtha, K. Angsukased, T. Bongkarn, Adv. Mater. Res., 55-57 (2008), p.197.

Google Scholar

[12] A. Zhang, M. lu, S. Wang, G. Zhou, S. Wang and Y. Zhou, Alloy Compd., 433 (2007), p. L7.

Google Scholar

[13] D. Xue, J. Xu and C. Yan, Matter. Lett., 59 (2005), p.2920.

Google Scholar

[14] I. Ganesh, R. Johnson, G. V. N. Rao, Y. R. Mahajan, S. S. Madavendra and B. M. Reddy, Ceram. Int., 31 (2005), p.67.

Google Scholar