The Effect of Calcination Temperatures on the Phase Formation and Microstructure of (Pb1-xSrx)TiO3 Powders

Article Preview

Abstract:

(Pb1-xSrx)TiO3 (PST) (x=0.25, 0.50) powders were synthesized by a mixed oxide solid-state reaction method under various calcination temperatures (600-1100oC). Powder samples were characterized using thermogravimetric (TGA), differential thermal analysis (DTA), x–ray diffractrometer (XRD) and scanning electron microscopy (SEM). The results showed that a single-phase of PST for x=0.25 and 0.50 powders was successfully obtained with a calcination condition of 950 oC for 2 h with a heating/cooling rate of 5oC/min. The TGA-DTA results corresponded to the XRD investigation. The lattice parameter a increased whilst the lattice parameter c decreased with increasing calcination temperatures. The tetragonality of powders decreased with an increase of calcination temperatures. The average particle size of the powders increased with the increase of calcination temperature.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Pages:

243-246

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Xing, J. Chen, J. Deng, G. Liu, J. Alloy. Comp., 360 (2003), p.286.

Google Scholar

[2] F. Zhang, T. Karaki, M. Adachi, Powder. Tech., 159 (2005), p.13.

Google Scholar

[3] J. Zhao, L. Li, Z. G, Mater. Sci. Engine. B., 99 (2003), p.313.

Google Scholar

[4] Y. Somiya, A.S. Bhalla, L.E. Cross, Int. J. Inorg. Mater., 3 (2001), p.709.

Google Scholar

[5] T. Karaki, J. Du, K. T. Fujii, M. Adachi, Ferroelectrics., 271 (2002), p.303.

Google Scholar

[6] T. Karaki, J. Du, K. T. Fujii, M. Adachi, Jpn. J. Appl. Phys., 41 (11B) (2002), p.6761.

Google Scholar

[7] L. Lan, A. Montenero, G. Gnappi, E. Dradi, J. Mater. Res., 30 (1995), p.3137.

Google Scholar

[8] C. Lu, Y. Xu, Mater. Lett., 27 (1996), p.13.

Google Scholar

[9] A. Udomporn, S. Ananta, Mater. Lett., 58 (2004), p.1154.

Google Scholar

[10] H. Tagawa, K. Igarashi, J. Am. Ceram. Soc. 69 (1986), p.310.

Google Scholar

[11] Powder Diffraction File No. 06-0452, International Center for Diffraction Data, Newton Square, PA, (2003).

Google Scholar

[12] F.M. Pontes, S.H. Leal, M.R.M.C. Santos, E.R. Lette, E. Longo, L.E.B. Soledade, A.J. Chiquito, M.A.C. Machado, J.A. Varela, Appl. Phys. A. 80 (2005), p.875.

DOI: 10.1007/s00339-003-2335-x

Google Scholar

[13] K. -T. Kim, C. -I. Kim, Thin. Solid. Films., 544 (2002), p.420.

Google Scholar