Particle Structure Analysis of Highly-Dispersed Barium Titanate Nanoparticles Obtained from Barium Titanyl Oxalate Nanoparticles and their Dielectric Properties

Article Preview

Abstract:

Barium titanate (BaTiO3) nanoparticles were prepared by two-step thermal decomposition method of barium titanyl oxalate nanoparticles with a size of 30 nm. The BaTiO3 particle sizes were changed from 12.3 to 142 nm by control of temperature at 2nd step. The X-ray diffraction (XRD) measurement revealed that a clear splitting of 002 and 200 planes was observed over 40 nm, and the c/a ratio of 1.0089 was obtained for the BaTiO3 nanoparticles with a size of 62.3 nm. This high c/a ratio in the BaTiO3 nanoparticles suggested that its mesoscopic particle structure was composed of very thin surface cubic layer below 5 nm. Thus, synchrotron XRD data were analyzed using a “two layers” model and a “three layers” model. The Rietveld analysis using the three layers model resulted in the particle structure with a cubic layer thickness of 2.5 nm and structure gradient layer thickness of 7.5 nm. Finally, the dielectric constant of these BaTiO3 nanoparticles with thin surface cubic layer was measured at room temperature, and the maximum dielectric constant over 30,000 was obtained at the nanoparticles with a size of 83.6 nm.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 421-422)

Pages:

506-509

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kinoshita and A. Yamaji, J. Appl. Phys., 45 (1976), p.371.

Google Scholar

[2] G. Arlt, D. Hennings and G. De With, J. Appl. Phys., 58 (1985), p.1619.

Google Scholar

[3] K. Ishikawa, K. Yoshikawa and N. Okada, Phys. Rev. B, 37 (1988), p.5852.

Google Scholar

[4] K. Uchino, E. Sadanaga and T. Hirose, J. Am. Ceram. Soc., 72 (1989), p.1555.

Google Scholar

[5] M. H. Frey and D. A. Payne, Phys. Rev. B, 54 (1996), p.3158.

Google Scholar

[6] S. Wada, T. Suzuki and T. Noma, J. Ceram. Soc. Jpn., 104 (1996), p.383.

Google Scholar

[7] D. McCauley, R. E. Newnham and C. A. Randall, J. Am. Ceram. Soc., 81 (1998), p.979.

Google Scholar

[8] Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson and P. Nanni, Phys. Rev. B, 70 (2004), 024107.

DOI: 10.1016/j.powtec.2004.09.016

Google Scholar

[9] S. Wada, M. Narahara, T. Hoshina, H. Kakemoto and T. Tsurumi, J. Mater. Sci., 38 (2003), p.2655.

DOI: 10.1023/a:1024438703449

Google Scholar

[10] S. Wada, H. Yasuno, T. Hoshina, S. -M. Nam, H. Kakemoto and T. Tsurumi, Jpn. J. Appl. Phys., 42 (2003), p.6188.

DOI: 10.1143/jjap.42.6188

Google Scholar

[11] T. Hoshina, H. Yasuno, S. -M. Nam, H. Kakemoto, T. Tsurumi and S. Wada, Trans. Mater. Res. Soc. Jpn., 29 (2004), p.1207.

Google Scholar

[12] T. Hoshina, S. Wada, Y. Kuroiwa, H. Kakemoto and T. Tsurumi, Proc. 2007 16th IEEE Int. Symp. Applications, Ferroelectrics, Nara, 2007, p.476.

DOI: 10.1109/isaf.2007.4393303

Google Scholar

[13] S. Wada, S. Kondo, C. Moriyoshi and Y. Kuroiwa, Jpn. J. Appl. Phys., 47 (2008), p.7612.

Google Scholar

[14] B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York, 1971, p.135.

Google Scholar

[15] J. Hlinka, private communication, (2007).

Google Scholar