Anelastic Phenomena at the Fibre-Matrix Interface of the Ti6Al4V-SiCf Composite

Article Preview

Abstract:

The composite, consisting of Ti6Al4V matrix reinforced by unidirectional SiC fibres (SCS-6), has been investigated by mechanical spectroscopy at temperatures up to 1,173 K. For comparison, the same experiments have been performed on the corresponding monolithic alloy. The internal friction (IF) spectrum of the composite exhibits a new relaxation peak superimposed to an exponentially increasing background. This peak, which is not present in the monolithic alloy, has an activation energy H = 186 kJ mol-1 and a relaxation time 0 = 2.3 x 10-15 s. The phenomenon has been attributed to a reorientation of interstitial-substitutional pairs in the  phase of Ti6Al4V matrix around the fibres. This explanation is supported by the results of micro-chemical characterization carried out by X-ray photoelectron spectroscopy (XPS) combined with Ar ion sputtering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-270

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nourbakhsh, H. Margolin, in: Proc. of the TMS annual meeting on Metal and Ceramic Matrix Composites, Anaheim, CA ,U.S.A. (1990), p.75.

Google Scholar

[2] S.C. Jha, in: High Performance Composites for the 1990s, TMS, edited by S. K. Das, C. P. Ballard and F. Maribar, The Minerals, Metals & Materials Society, Warrendale, PA, U.S.A. (1991).

Google Scholar

[3] T.W. Clyne, Metal Matrix Composites: Matrices and Processing, in: Encyclopaedia of Materials: Science and Technology, edited by A. Mortensen, Elsevier (2001), § 3. 7, p.1.

Google Scholar

[4] M.E. Tata, R. Montanari, C. Testani, G. Valdrè: Metallurgia Italiana n. 7-8 (2005), p.43.

Google Scholar

[5] R. Donnini, S. Kaciulis, A. Mezzi, R. Montanari, C. Testani, in: Proc. of the Conf. on Appl. Mechanics 2007, April 16-19, Malenovice, Czech Republic (2007), p.55.

Google Scholar

[6] A. Mezzi, R. Donnini, S. Kaciulis, R. Montanari, C. Testani: Surf. and Interface Anal. Vol. 40 (2008), p.277.

DOI: 10.1002/sia.2644

Google Scholar

[7] R. Donnini, S. Kaciulis, A. Mezzi, R. Montanari, C. Testani: Mater. Sci. Forum Vol. 604-605 (2009), p.331.

DOI: 10.4028/www.scientific.net/msf.604-605.331

Google Scholar

[8] P. Deodati, R. Donnini, R. Montanari, C. Testani, T. Valente: Mater. Sci. Forum Vol. 604-605 (2009), p.341.

Google Scholar

[9] M.S. Blanter, I.S. Golovin, H. Neuhauser, H.R. Sinning, in: Internal Friction in Metallic Materials - A Handbook, Berlin: Springer (2007), p.261.

Google Scholar

[10] R. Schaller: Mater. Sci. Eng. A Vol. 442 (2006), p.423.

Google Scholar

[11] P. Deodati, R. Donnini, R. Montanari, C. Testani: Mater. Sci. Eng. A (2009) in press.

Google Scholar

[12] J. Luthin, H. Plank, J. Roth, Ch. Linsmeier: Nucl. Instrum. Methods Phys. Res. Sect. 182 (2001), p.218.

Google Scholar

[13] C. Arvieu, J.P. Manaud, J.M. Quenisset: J. Alloys Compd. Vol. 368 (2004), p.116.

Google Scholar

[14] A.S. Nowick, B.S. Berry, in: Anelastic Relaxation in Crystalline Materials, Academic Press, New York and London (1972), p.454.

Google Scholar

[15] L.H. He, C.W. Lim: Composites Sci. and Technol. Vol. 61 (2001), p.579.

Google Scholar

[16] R. Raj, M. Ashby: Metall. Trans. Vol. 2 (1971), p.1113.

Google Scholar

[17] M.H. Hou, R.F. Davies: J. Mater. Sci. Vol. 14-10 (1979), p.2411.

Google Scholar

[18] M.H. Hou, R.F. Davies, D.E. Newbury: J. Mater. Sci. Vol. 15-8 (1980), p. (2073).

Google Scholar

[19] M. Naka, J.C. Feng, J.C. Schuster: Metall. and Mater. Trans. Vol. 28 A (1997), p.1385.

Google Scholar

[20] D. Gupta, S. Weining: Acta Metall. Vol. 10 (1962), p.292.

Google Scholar

[21] F. Povolo, E.A. Bisogni: Acta Metall. Vol. 14 (1966), p.711.

Google Scholar