Thermo-Mechanical Monitoring of Composite Materials during the Pyrolysis of C/C Composites

Article Preview

Abstract:

Conventional mechanical and structural properties allow to describe the complete composite material. They do, however, not describe the reaction during the pyrolysis process. The dynamic mechanical thermal analysis (DMTA) is a technique which is used to characterize materials. In particular, the DMTA method is used to observe the viscoelastic nature of polymers. Another interesting application area of the DMTA is the simulation of pyrolysis experiments to obtain carbon/carbon composites (C/C composites). The pyrolysis process of carbon-fibre-reinforced plastics (CFRP) was performed by means of inert gas (Ar, ambient pressure) under a defined time-temperature profile or alternatively approached by short time sweeps in a DMTA. So the temperature dependence of the elastic modulus (E-modulus) and of the internal damping (tan δ) are determined starting from the cured carbon-fibre-reinforced plastic to the transformed C/C composites. The analyses were applied for different matrix resins. The shown method improves the access to usually hidden mechanical and structural properties and requires further investigation of the entire polymerization and pyrolysis processes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-105

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.P. Menard: Dynamic mechanical analysis: a practical introduction, (CRC Press LLC, 1999).

Google Scholar

[2] Th. Lampke: Beitrag zur Charakterisierung naturfaserverstärkter Verbundwerkstoffe mit hochpolymerer Matrix, Ph. D Thesis, TU Chemnitz, Germany (2001).

Google Scholar

[3] K. Hying: Analyse viskoelastischer Eigenschaften von Poly(tetrafluorethylen) im Bereich des βÜbergangs, Ph. D Thesis, RWTH Aachen, Germany (2003).

Google Scholar

[4] A.G. Odeshi: Beitrag zur Herstellung von Kohlenstofffaserverstärkten KeramikmatrixVerbunden, Ph.D. Thesis, TU Chemnitz, Germany (2001).

Google Scholar

[5] M. Metten: Veränderung der Verbundfestigkeit von Hart/Weich-Verbunden und die mechanischen Eigenschaften von thermoplastischen Elastomeren durch eine Elektronenbestrahlung, Ph. D Thesis, TU Darmstadt, Germany (2002).

Google Scholar

[6] H. Mucha: Untersuchung der Porositätsentwicklung von Phenolharzen als polymere- und Kohlenstoffspendermatrices in C-Faserverbundwerkstoffen, Ph. D Thesis, TU Chemnitz, Germany (2007).

Google Scholar

[7] N.N. Operating Instructions for EPLEXOR, Fa. GABO (2004).

Google Scholar

[8] B. Wielage, H. Mucha and A. Odeshi: Dynamisch und thermische Analyse von kohlenstofffaserverstärkten Phenolharzverbunden, Tagungsband Verbundwerkstoffe und Werkstoffverbund, edited by K. Schulte und K.U. Kainer (1999), 358 ff.

Google Scholar

[9] B. Heidenreich: Herstellung von Faserkeramiken nach dem Flüssigsilizierverfahren (LSITechnik), Keramische Verbundwerkstoffe, (2003), 48 ff.

DOI: 10.1002/3527607315.ch3

Google Scholar

[10] B. Wielage, A.G. Odeshi, H. Mucha, H. Lang and R. Buschbeck: J. Mater. Process. Technol. Vol. 132 (2003) p.313.

Google Scholar

[11] A.G. Odeshi, H. Mucha and B. Wielage: Manufacture and characterisation of a low-cost carbon-fibre-reinforced C/SiC dual- matrix composite, Carbon Vol. 44 (2006), p. (1994).

DOI: 10.1016/j.carbon.2006.01.025

Google Scholar

[12] W. Schäfer and W.D. Vogel: Faserverstärkte Keramiken hergestellt durch Polymerinfiltration, Keramische Verbundwerkstoffe, (2003) 76-93.

DOI: 10.1002/3527607315.ch4

Google Scholar

[13] Z. Ahmad, M.I. Sarwar and J.E. Mark: Dynamic-Mechanical Thermal Analysis of AramidSilica Hybrid Composites Prepared in a Sol-Gel Process, Journal of Applied Polymer Science, 63 (1997) 1345-1352.

DOI: 10.1002/(sici)1097-4628(19970307)63:10<1345::aid-app14>3.0.co;2-3

Google Scholar

[14] E. Roeder, H. -J. Mayer and R. Liedhegener: Elastizität und mechanische Dämpfung eines unidirektional SiC-kurzfaserverstärkten Alkali-Kalk-Silicatglases, Materialwissenschaft und Werkstofftechnik, 25 (1994) 244-251.

DOI: 10.1002/mawe.19940250609

Google Scholar

[15] N.P. Bansal: Handbook of ceramic composites. Boston: Kluwer, (2005).

Google Scholar

[16] H. Mucha, Y. -E. Kim and B. Wielage: Approaches to reveal porosity in Phenolic Resin derived CFRP and C/C Composites, 16th ICCM, Kyoto, Japan, (2007).

Google Scholar

[17] H. Salmang and H. Scholze: Keramik, Springer Verlang, (2007).

Google Scholar

[18] K. Hultzsch: Chemie der Phenolharze, Springer Verlag, Berlin, Germany, (1950).

Google Scholar

[19] H. Mucha, B. Wielage, R. Buschbeck and H. Lang: Untersuchung von PhenolformaldehydHarzen als Matrixmaterial für C/C-Verbunde, Verbundwerkstoffe und Werkstoffverbunde (2005) 217-222.

Google Scholar

[20] J. Schulte-Fischedick, S. Seiz, N. Lützenburger, A. Wanner and H. Voggenreiter: The crack development on the micro- and mesoscopic scale during the pyrolysis of carbon-fibrereinforced plastics to carbon/carbon composites, Composites Part A, 38 (2007).

DOI: 10.1016/j.compositesa.2007.06.013

Google Scholar