[1]
C. Scislak and T. Stoppacher. Seitenleitwerke Kompakt. Das Handbuch der SLW Montage SA/TA. Airbus Deutschland, (2007).
Google Scholar
[2]
S. Rogal. SMC-Aussenhautbauteile mit Class A-Oberflaechen-Qualitaet. Technical Report, Tagungsunterlagen Kunstoffe in Automobil. Manheim 5-6 April. 131-140., (2000).
Google Scholar
[3]
M. Schemme, T. Osswald. Personal Conversation. Technical Report, PEGUFORM, Germany, (1998).
Google Scholar
[4]
B. Davis, , P. Gramann, T.A. Osswald, Compression Molding. Hanser Publishers, Munich (2003).
Google Scholar
[5]
M. Schoppmann. Analyse der Faser-Matrix-Entmischungsvorgaenge bei SMC- und GMTBauteilen mit Hilfe von Praktischen Untersuchungen und der Finiteelemente Methode. Master's Thesis, IKV, RWTH-Aachen, (1997).
Google Scholar
[6]
E. Schmachtenberg, D. Lippe, and K. Skrodolies. Faser/Matrix-Entmischung Waehrend des Fliesspressens von SMC. Journal of plastics technology, 1, (2005).
Google Scholar
[7]
H. Heintges. Experimentelle Studie uber Faserorentierungvorgange beim Pressverfahren in der Kunstoffverarbeitung. Technical Report, Unverofffentliche Studienarbeit am IKV. Aachen., (1989).
Google Scholar
[8]
M. Hussain. Experimentelle und Numerische Untersuchungen in Verrippten SMC Pressteilen. Technical report, IKV Aachen, (1989).
Google Scholar
[9]
L. Switzer. Simulating Systems of Flexible Fibers. PhD thesis, University of WisconsinMadison, (2002).
Google Scholar
[10]
M.E.M. Lee and H. Ockendon. A Continuum Model for Entangled Fibres. Euro. Jnl of Applied Mathematics, 16: 145-160, (2005).
Google Scholar
[11]
R.M. Jendrejack, J.J. de Pablo, and M.D. Graham. Stochastic Simulations of DNA in flow: Dynamics and the Effects of Hydrodynamic Interactions. J. Chem. Phys., 116: 7752-7759, (2002).
DOI: 10.1063/1.1466831
Google Scholar
[12]
J.M. Burgers. On the Motion of Small Particles of Elongated Form Suspended in a Viscous Liquid. Report on Viscosity and Plasticity, Nordemann Publishing, New York, (1938).
Google Scholar
[13]
G. K. Batchelor. Slender-Body Theory for Particles of Arbitrary Cross-Section in Stokes Flow. Journal of Fluid Mechanics, 44 part 3: 419-440, (1970).
DOI: 10.1017/s002211207000191x
Google Scholar
[14]
G.B. Jeffery. The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid. Proc. Roy. Soc., A102: 161, (1922).
Google Scholar
[15]
H. Brenner. The Stokes Resistance of an Arbitrary Particle. Chem. Eng. Sci., 18: 1-25, (1963).
Google Scholar
[16]
F.P. Folgar and C.L. Tucker. Orientation Behavior of Fibers in Concentrated Suspensions. Reinf. Plast. Comp., 3: 98, (1984).
Google Scholar
[17]
S. G. Advani and C. Tucker. The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites. Journal of Rheology, 31: 751, (1987).
DOI: 10.1122/1.549945
Google Scholar
[18]
http: /www. m-base. de/main/express-introduction. html.
Google Scholar
[19]
http: /www. moldflow. com/stp.
Google Scholar
[20]
J.P. Hernandez-Ortiz and T.A. Osswald. Polymer Processing. Modeling and Simulation. Hanser, (2006).
Google Scholar
[21]
S.G. Mason and O.L. Forgacs. Particle Motions in Sheared Suspensions: IX. Spin and Deformation of Flexible Threadlike Particles. Journal of Colloid Science, 14: 457-472, (1959).
DOI: 10.1016/0095-8522(59)90012-1
Google Scholar
[22]
S. G. Mason and O.L. Forgacs. Particle Motions in Sheared Suspensions: X. Orbits of Flexible Threadlike Particles. Journal of Colloid Science, 14: 473-491, (1959).
DOI: 10.1016/0095-8522(59)90013-3
Google Scholar
[23]
M.R. Barone and D.A. Caulk. Int. J. Heat Mass Transfer, 22: 1021, (1979).
Google Scholar
[24]
M. R. Barone and D. A. Caulk. A Model for the Flow of a Chopped Reinforced Polymer Compound in mCopression Molding, Journal of Applied Mechanics. Journal of Applied Mechanics, 361, (1986).
DOI: 10.1115/1.3171765
Google Scholar
[25]
M.R. Barone and T.A. Osswald. Boundary Integral Equations for Analyzing the Flow of a Chopped Fiber Reinforced Polymer Compound in Compression Molding. J. of NonNewtonian Fluid Mechanics, 26: 185-206, (1987).
DOI: 10.1016/0377-0257(87)80004-6
Google Scholar
[26]
T.A. Osswald and C.L. Tucker. Compression Mold Filling Simulation for Non Planar Parts. International Polymer Processing, 5(2): 79-87, (1990).
DOI: 10.3139/217.900079
Google Scholar
[27]
E. Haberstroh, H. Bister, M. C. Voehringer, G. Busse, S. Predak, H. Ehbing, and K. Webelhaus. Vorhersage der Faserorientierung und der Mechanischen Eigenschaften Kurzfaserverstaerkter PUR-Bauteile. Journal of Polymer Technology, 1, (2006).
Google Scholar
[28]
http: /www. simcon-worldwide. com/simconproducts. jsp.
Google Scholar
[29]
G. Bossis and J. F. Brady. Dynamic Simulation of Sheared Suspensions. l . General Method. Journal of Chemical Physics, 80: 5141-5154, (1984).
DOI: 10.1063/1.446585
Google Scholar
[30]
H. Brenner and M.E. Oneill. On the Stokes Resistance of Multiparticle Systems in a Linear Shear Field. Chemical Engineering Science, 27: 1421-1439, (1972).
DOI: 10.1016/0009-2509(72)85029-2
Google Scholar
[31]
J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Kluwer, Dordrecht, (1991).
Google Scholar
[32]
S. Kim and R.T. Mifflin. The Resistance and Mobility Functions of Two Equal Spheres in LowReynolds Number Flow. Phys. Fluids, 28, (1985).
DOI: 10.1063/1.865384
Google Scholar
[33]
G. Bossis and J.F. Brady. Self-Diffusion of Brownian Particles in Concentrated Suspensions Under Shear. J. Chem. Phys., 9: 5437-5448, (1987).
DOI: 10.1063/1.453708
Google Scholar
[34]
J.F. Brady and G. Bossis. Stokesian Dynamics. Ann. Rev. Fluid Mech., 20: 111- 157, (1988).
DOI: 10.1146/annurev.fl.20.010188.000551
Google Scholar
[35]
M.B. Mackaplow and E.S.G. Shaqfeh. A Numerical Study of the Sedimentation of Fibre Suspensions. J. Fluid Mech., 376: 149-182, (1988).
DOI: 10.1017/s0022112098002663
Google Scholar
[36]
D. Saintillan, E. Darve, and E.S.G. Shaqfeh. A Smooth Particle-Mesh Ewald algorithm for Stokes Suspension Simulations: The Sedimentation of Fibers. Phys. Fluids, 17, (2005).
DOI: 10.1063/1.1862262
Google Scholar
[37]
J.E. Butler and E.S.G. Shaqfeh. Dynamic Simulations of the Inhomogeneous Sedimentation of Rigid Fibres. J. Fluid Mech., 468: 205-237, (2002).
DOI: 10.1017/s0022112002001544
Google Scholar
[38]
R.R. Sundararajakumar and D.L. Koch. Structure and Properties of Sheared Fiber Suspensions with Mechanical Contacts. Journal of Non-Newtonian Fluid Mechanics, 73: 205-239, (1997).
DOI: 10.1016/s0377-0257(97)00043-8
Google Scholar
[39]
A. G. Gibson and S. Toll. Mechanics of the Squeeze Flow of Planar Fibre Suspensions. Journal of Non-Newtonian Fluid Mechanics, 82: 1-24, (1999).
DOI: 10.1016/s0377-0257(98)00127-x
Google Scholar
[40]
K. A. Ericsson, S. Toll, and J. A Manson. The Two-Way Interaction Between Anisotropic Flow and Fiber Orientation in Squeeze Flow. Journal of Rheology, 41(3): 491-511, (1997).
DOI: 10.1122/1.550833
Google Scholar
[41]
C. Servais, A. Luciani, J. Anders, and E. Manson. Fiber-Fiber Interaction in Concentrated Suspensions: Dispersed Fiber Bundles. J. Rheol, 43(4): 1005-1018, (1999).
DOI: 10.1122/1.551015
Google Scholar
[42]
D. L. Koch. On Hydrodynamic Diffusion and Drift in Sheared Suspensions. Physics of Fluids A, 1: 1742-1745, (1989).
DOI: 10.1063/1.857498
Google Scholar
[43]
M. Wysocki, R. Larsson, and S. Toll. Hydrostatic Consolidation of Commingled Fibre Composites. Composites Science and Technology, 65: 1507-1519, (2005).
DOI: 10.1016/j.compscitech.2005.01.002
Google Scholar
[44]
J.P. Hernandez-Ortiz. Boundary Integral Equations for Viscous Flows: Non-Newtonian Behavior and Solid Inclusions. PhD thesis, University of Wisconsin-Madison, Madison, (2004).
Google Scholar
[45]
E. Guth and R. Simha. Kolloid-Zeitschrift, 74: 266, (1936).
Google Scholar
[46]
A. Einstein. Ann. Physik, 19: 549, (1906).
Google Scholar
[47]
S. Yamamoto and T. Matsuoka. A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field. J. Chem. Phys., 98, (1993).
Google Scholar
[48]
R. F. Ross and D. J. Klingenberg. Dynamic Simulation of Flexible Fibers Composed of Linked Rigid Bodies. J. Chem. Phys., 106, (1997).
DOI: 10.1063/1.473067
Google Scholar
[49]
P. Skjetne,R. Ross, and D. Klingenberg. Simulation of Single Fiber Dynamics. J. Chem. Phys., 107, (1997).
Google Scholar
[50]
C. F. Schmidt, L. H. Switzer, and D. J. Klingenberg. Simulations of Fiber Flocculation: Effects of Fiber Properties and Interfiber friction. J. Rheology, 44: 781-809, (2000).
DOI: 10.1122/1.551116
Google Scholar