Modeling of Fiber Jamming Phenomena during Processing of Fiber Reinforced Composite Parts

Article Preview

Abstract:

A current research effort at the Polymer Engineering Center (PEC) consists on providing the tools required to understand and predict defects that arise during the molding of fiber reinforced composites. This review starts with a comprehensive research summary in the field of computer simulation of composites molding and then presents our current work regarding computer simulations of flexible fiber suspensions

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-44

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Scislak and T. Stoppacher. Seitenleitwerke Kompakt. Das Handbuch der SLW Montage SA/TA. Airbus Deutschland, (2007).

Google Scholar

[2] S. Rogal. SMC-Aussenhautbauteile mit Class A-Oberflaechen-Qualitaet. Technical Report, Tagungsunterlagen Kunstoffe in Automobil. Manheim 5-6 April. 131-140., (2000).

Google Scholar

[3] M. Schemme, T. Osswald. Personal Conversation. Technical Report, PEGUFORM, Germany, (1998).

Google Scholar

[4] B. Davis, , P. Gramann, T.A. Osswald, Compression Molding. Hanser Publishers, Munich (2003).

Google Scholar

[5] M. Schoppmann. Analyse der Faser-Matrix-Entmischungsvorgaenge bei SMC- und GMTBauteilen mit Hilfe von Praktischen Untersuchungen und der Finiteelemente Methode. Master's Thesis, IKV, RWTH-Aachen, (1997).

Google Scholar

[6] E. Schmachtenberg, D. Lippe, and K. Skrodolies. Faser/Matrix-Entmischung Waehrend des Fliesspressens von SMC. Journal of plastics technology, 1, (2005).

Google Scholar

[7] H. Heintges. Experimentelle Studie uber Faserorentierungvorgange beim Pressverfahren in der Kunstoffverarbeitung. Technical Report, Unverofffentliche Studienarbeit am IKV. Aachen., (1989).

Google Scholar

[8] M. Hussain. Experimentelle und Numerische Untersuchungen in Verrippten SMC Pressteilen. Technical report, IKV Aachen, (1989).

Google Scholar

[9] L. Switzer. Simulating Systems of Flexible Fibers. PhD thesis, University of WisconsinMadison, (2002).

Google Scholar

[10] M.E.M. Lee and H. Ockendon. A Continuum Model for Entangled Fibres. Euro. Jnl of Applied Mathematics, 16: 145-160, (2005).

Google Scholar

[11] R.M. Jendrejack, J.J. de Pablo, and M.D. Graham. Stochastic Simulations of DNA in flow: Dynamics and the Effects of Hydrodynamic Interactions. J. Chem. Phys., 116: 7752-7759, (2002).

DOI: 10.1063/1.1466831

Google Scholar

[12] J.M. Burgers. On the Motion of Small Particles of Elongated Form Suspended in a Viscous Liquid. Report on Viscosity and Plasticity, Nordemann Publishing, New York, (1938).

Google Scholar

[13] G. K. Batchelor. Slender-Body Theory for Particles of Arbitrary Cross-Section in Stokes Flow. Journal of Fluid Mechanics, 44 part 3: 419-440, (1970).

DOI: 10.1017/s002211207000191x

Google Scholar

[14] G.B. Jeffery. The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid. Proc. Roy. Soc., A102: 161, (1922).

Google Scholar

[15] H. Brenner. The Stokes Resistance of an Arbitrary Particle. Chem. Eng. Sci., 18: 1-25, (1963).

Google Scholar

[16] F.P. Folgar and C.L. Tucker. Orientation Behavior of Fibers in Concentrated Suspensions. Reinf. Plast. Comp., 3: 98, (1984).

Google Scholar

[17] S. G. Advani and C. Tucker. The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites. Journal of Rheology, 31: 751, (1987).

DOI: 10.1122/1.549945

Google Scholar

[18] http: /www. m-base. de/main/express-introduction. html.

Google Scholar

[19] http: /www. moldflow. com/stp.

Google Scholar

[20] J.P. Hernandez-Ortiz and T.A. Osswald. Polymer Processing. Modeling and Simulation. Hanser, (2006).

Google Scholar

[21] S.G. Mason and O.L. Forgacs. Particle Motions in Sheared Suspensions: IX. Spin and Deformation of Flexible Threadlike Particles. Journal of Colloid Science, 14: 457-472, (1959).

DOI: 10.1016/0095-8522(59)90012-1

Google Scholar

[22] S. G. Mason and O.L. Forgacs. Particle Motions in Sheared Suspensions: X. Orbits of Flexible Threadlike Particles. Journal of Colloid Science, 14: 473-491, (1959).

DOI: 10.1016/0095-8522(59)90013-3

Google Scholar

[23] M.R. Barone and D.A. Caulk. Int. J. Heat Mass Transfer, 22: 1021, (1979).

Google Scholar

[24] M. R. Barone and D. A. Caulk. A Model for the Flow of a Chopped Reinforced Polymer Compound in mCopression Molding, Journal of Applied Mechanics. Journal of Applied Mechanics, 361, (1986).

DOI: 10.1115/1.3171765

Google Scholar

[25] M.R. Barone and T.A. Osswald. Boundary Integral Equations for Analyzing the Flow of a Chopped Fiber Reinforced Polymer Compound in Compression Molding. J. of NonNewtonian Fluid Mechanics, 26: 185-206, (1987).

DOI: 10.1016/0377-0257(87)80004-6

Google Scholar

[26] T.A. Osswald and C.L. Tucker. Compression Mold Filling Simulation for Non Planar Parts. International Polymer Processing, 5(2): 79-87, (1990).

DOI: 10.3139/217.900079

Google Scholar

[27] E. Haberstroh, H. Bister, M. C. Voehringer, G. Busse, S. Predak, H. Ehbing, and K. Webelhaus. Vorhersage der Faserorientierung und der Mechanischen Eigenschaften Kurzfaserverstaerkter PUR-Bauteile. Journal of Polymer Technology, 1, (2006).

Google Scholar

[28] http: /www. simcon-worldwide. com/simconproducts. jsp.

Google Scholar

[29] G. Bossis and J. F. Brady. Dynamic Simulation of Sheared Suspensions. l . General Method. Journal of Chemical Physics, 80: 5141-5154, (1984).

DOI: 10.1063/1.446585

Google Scholar

[30] H. Brenner and M.E. Oneill. On the Stokes Resistance of Multiparticle Systems in a Linear Shear Field. Chemical Engineering Science, 27: 1421-1439, (1972).

DOI: 10.1016/0009-2509(72)85029-2

Google Scholar

[31] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Kluwer, Dordrecht, (1991).

Google Scholar

[32] S. Kim and R.T. Mifflin. The Resistance and Mobility Functions of Two Equal Spheres in LowReynolds Number Flow. Phys. Fluids, 28, (1985).

DOI: 10.1063/1.865384

Google Scholar

[33] G. Bossis and J.F. Brady. Self-Diffusion of Brownian Particles in Concentrated Suspensions Under Shear. J. Chem. Phys., 9: 5437-5448, (1987).

DOI: 10.1063/1.453708

Google Scholar

[34] J.F. Brady and G. Bossis. Stokesian Dynamics. Ann. Rev. Fluid Mech., 20: 111- 157, (1988).

DOI: 10.1146/annurev.fl.20.010188.000551

Google Scholar

[35] M.B. Mackaplow and E.S.G. Shaqfeh. A Numerical Study of the Sedimentation of Fibre Suspensions. J. Fluid Mech., 376: 149-182, (1988).

DOI: 10.1017/s0022112098002663

Google Scholar

[36] D. Saintillan, E. Darve, and E.S.G. Shaqfeh. A Smooth Particle-Mesh Ewald algorithm for Stokes Suspension Simulations: The Sedimentation of Fibers. Phys. Fluids, 17, (2005).

DOI: 10.1063/1.1862262

Google Scholar

[37] J.E. Butler and E.S.G. Shaqfeh. Dynamic Simulations of the Inhomogeneous Sedimentation of Rigid Fibres. J. Fluid Mech., 468: 205-237, (2002).

DOI: 10.1017/s0022112002001544

Google Scholar

[38] R.R. Sundararajakumar and D.L. Koch. Structure and Properties of Sheared Fiber Suspensions with Mechanical Contacts. Journal of Non-Newtonian Fluid Mechanics, 73: 205-239, (1997).

DOI: 10.1016/s0377-0257(97)00043-8

Google Scholar

[39] A. G. Gibson and S. Toll. Mechanics of the Squeeze Flow of Planar Fibre Suspensions. Journal of Non-Newtonian Fluid Mechanics, 82: 1-24, (1999).

DOI: 10.1016/s0377-0257(98)00127-x

Google Scholar

[40] K. A. Ericsson, S. Toll, and J. A Manson. The Two-Way Interaction Between Anisotropic Flow and Fiber Orientation in Squeeze Flow. Journal of Rheology, 41(3): 491-511, (1997).

DOI: 10.1122/1.550833

Google Scholar

[41] C. Servais, A. Luciani, J. Anders, and E. Manson. Fiber-Fiber Interaction in Concentrated Suspensions: Dispersed Fiber Bundles. J. Rheol, 43(4): 1005-1018, (1999).

DOI: 10.1122/1.551015

Google Scholar

[42] D. L. Koch. On Hydrodynamic Diffusion and Drift in Sheared Suspensions. Physics of Fluids A, 1: 1742-1745, (1989).

DOI: 10.1063/1.857498

Google Scholar

[43] M. Wysocki, R. Larsson, and S. Toll. Hydrostatic Consolidation of Commingled Fibre Composites. Composites Science and Technology, 65: 1507-1519, (2005).

DOI: 10.1016/j.compscitech.2005.01.002

Google Scholar

[44] J.P. Hernandez-Ortiz. Boundary Integral Equations for Viscous Flows: Non-Newtonian Behavior and Solid Inclusions. PhD thesis, University of Wisconsin-Madison, Madison, (2004).

Google Scholar

[45] E. Guth and R. Simha. Kolloid-Zeitschrift, 74: 266, (1936).

Google Scholar

[46] A. Einstein. Ann. Physik, 19: 549, (1906).

Google Scholar

[47] S. Yamamoto and T. Matsuoka. A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field. J. Chem. Phys., 98, (1993).

Google Scholar

[48] R. F. Ross and D. J. Klingenberg. Dynamic Simulation of Flexible Fibers Composed of Linked Rigid Bodies. J. Chem. Phys., 106, (1997).

DOI: 10.1063/1.473067

Google Scholar

[49] P. Skjetne,R. Ross, and D. Klingenberg. Simulation of Single Fiber Dynamics. J. Chem. Phys., 107, (1997).

Google Scholar

[50] C. F. Schmidt, L. H. Switzer, and D. J. Klingenberg. Simulations of Fiber Flocculation: Effects of Fiber Properties and Interfiber friction. J. Rheology, 44: 781-809, (2000).

DOI: 10.1122/1.551116

Google Scholar