Finite Element Simulation of Ti-6Al-4V Three-Dimensional Milling

Abstract:

Article Preview

In this paper, by adopting an equivalent geometry model of the cutting layer, a three-dimensional (3D) finite element model was built to investigate the milling of Ti-6Al-4V. The chip separating process was simulated by Arbitrary Lagrangian-Eulerian (ALE) method and automatic re-meshing technology. The experiments of milling Ti-6Al-4V were carried out to verify finite element model of milling process. The comparisons of the predicted cutting forces and the measured forces showed reasonable agreement. Finally, the finite element model was used to predict the chip deformation and the three-dimensional distribution of cutting force, stress and temperature in milling Ti-6Al-4V.

Info:

Periodical:

Key Engineering Materials (Volumes 426-427)

Edited by:

Dunwen Zuo, Hun Guo, Guoxing Tang, Weidong Jin, Chunjie Liu and Chun Su

Pages:

701-704

DOI:

10.4028/www.scientific.net/KEM.426-427.701

Citation:

Y. Zhao et al., "Finite Element Simulation of Ti-6Al-4V Three-Dimensional Milling", Key Engineering Materials, Vols. 426-427, pp. 701-704, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.