Anisotropic Reflectivity of Rubbed Polyimide Liquid Crystal Alignment Layer

Article Preview

Abstract:

The surface optical anisotropy of rubbed polyimide films has been detected using reflection anisotropy spectroscopy. The amplitude of the reflection anisotropy signals increases with the rubbing strength. Rubbing also causes changes in pretilt angle of liquid crystal molecules which are in contact with the rubbed polyimide. An increase in rubbing strength results in an increase in the pretilt angel. The pretilt of the liquid crystal molecules was found to linearly correlate with the amplitude of the RA signals.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 428-429)

Pages:

309-316

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.E. Becker, R.A. Kilian, B.B. Kosmowski and D.A. Milynski: Mol. Cryst. Liq. Cryst. Vol. 130 (1986), p.167.

Google Scholar

[2] R.W. Filas and J.W. Patel: Appl. Phys. Lett. Vol. 50 (1987), p.1426.

Google Scholar

[3] J.M. Geary , J.W. Goodby, A.R. Kemtz and J.S. Patel: J. Appl. Phys. Vol. 62 (1987), p.4100.

Google Scholar

[4] K. Sawa, K. Sumiyoshi, Y. Hirai, K. Tateishi and T. Kamejima: Jpn. J. Appl. Phys. Vol. 33 (1994), p.6273.

Google Scholar

[5] K. Sakamoto, R. Arafune, N. Ito, S. Ushioda, Y. Suzuki and S. Morokawa: Jpn. J. Appl. Phys. Vol. 33 (1994), p. L1323.

DOI: 10.1143/jjap.33.l1323

Google Scholar

[6] Y. Ouchi, I. hlori, M. Sei, E. Ito, A. Araki, H. Ishii and K. Kondo: PF Act. Rep. Vol. 11 (1993), p.256.

Google Scholar

[7] I. Hirosawa: Jpn. J. Appl. Phys. Vol. 35 (1996), p.5873.

Google Scholar

[8] R. Arafune, K. Sakamoto and S. Ushioda: Appl. Phys. Lett. Vol. 71 (1997), p.2755.

Google Scholar

[9] D.E. Aspnes, J. P. Harbison, A. A. Studna and L.T. Florez: App. Phys. Lett. Vol. 52 (1988), p.957.

Google Scholar

[10] B.F. MacDonal, R.J. Cole, W. Zheng and C. Miremont: Phys. Stat. Sol. (a) Vol. 188 (2001), p.1577.

Google Scholar

[11] B.F. MacDonal, W. Zheng and R.J. Cole: J Appl. Phys. Vol. 93 (2003), p.4442.

Google Scholar

[12] D. -S. Seo and S. Kobayashi: Appl. Phys. Lett. Vol. 61 (1992), p.2392.

Google Scholar

[13] V. Witter, G. Bauer and D.W. Berreman: Phys. Lett. A Vol. 56 (1976), p.142.

Google Scholar

[14] K.Y. Han, T. Miyashita and T. Uchida: Mol. Cryst. Liq. Cryst. Vol. 241 (1994), p.147.

Google Scholar

[15] W. Zheng, C. H. Lu and Y. C. Ye, Jpn. J. Appl. Phys. Vol. 47 (2008), p.1651.

Google Scholar

[16] W.J. Zheng, C. C. Wang and C. H. Lu, J. Phys. D: Appl. Phys. Vol. 42 (2009), 045401.

Google Scholar

[17] V.L. Berkovits, P. Chiaradia, D. Paget, A.B. Gordeeva and C. Goletti: Surf. Sci. Vol. 441 (1999), p.26.

Google Scholar

[18] J.R. Power, P. Weightman, S. Bose, A.I. Shkrebtii and R. Del Sole: Phys. Rev. Lett. Vol. 80 (1998), p.3133.

Google Scholar

[19] W.G. Schmidt, N. Esser, A.M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, Th. Hannappel, S. Visbeck, F. Wllig and W. Richter: Phys. Rev. B, Vol. 61 (2000), R16 335.

Google Scholar

[20] K. -W. Lee, S. -H. Paek, A. Lien, C. Curning and H. Fukuro: Macromolecules Vol. 29 (1996), p.8894.

Google Scholar