Development of Whisker Toughening Ceramic Cutting Tool Composite by In Situ Synthesis Technology

Article Preview

Abstract:

While whisker toughening ceramic cutting tool composites have excellent mechanical properties at either room or high temperature, the development of them is often limited by some difficulties in the fabrication and application. Here a TiC whisker toughening Al2O3 ceramic cutting tool composite is developed by in situ synthesis technology. Experimental results show the flexure strength, fracture toughness and Vickers hardness of the composite can achieve to 855.7MPa, 7.63 MPa•m1/2 and 19.5GPa, respectively. Being different to that of conventional whisker toughening ceramic composites, the toughness of the composite is dominated by the chemical interface bonding between TiC and Al2O3, which increases with increasing sintering temperature, and the sliding resistance is suggested to be due to the physical absorption and mechanical meshing between the two debonded surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 431-432)

Pages:

201-204

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.S. Kumar, A.R. Durai and T. Sornakumar: Int. J. Refract. Met. Hard Mater. Vol. 21 (2003), p.109.

Google Scholar

[2] A.S. Kumar, A.R. Durai and T. Sornakumar: Int. J. Refract. Met. Hard Mater. Vol. 22 (2004), p.17.

Google Scholar

[3] C.Z. Huang, J. Wang and X. Ai: Int. J. Mach. Tool. Manu, Vol. 40 (2000), p.823.

Google Scholar

[4] E. Aslan: Mater. Design, Vol. 26 (2005), p.21.

Google Scholar

[5] C.H. Xu: J. Eur. Ceram. Soc, Vol 25 (2005), p.605.

Google Scholar

[6] Y. Fu, Y.W. Gu and H. Du: Scripta Mater, Vol. 44 (2001), p.111.

Google Scholar

[7] J. Gong, H. Miao and Z. Zhao: J. Eur. Ceram. Soc, Vol. 21 (2001), p.2377.

Google Scholar

[8] F.C. Peillon and F. Thevenot: J. Eur. Ceram. Soc, Vol. 22 (2002), p.271.

Google Scholar

[9] Z.S. Rak and J. Czechowski: J. Eur. Ceram. Soc, Vol. 18 (1998), p.373.

Google Scholar

[10] Y.Q. Wu, Y.F. Zhang and J.K. Guo: Mater. Rev, Vol. 14 (2000), p.20 (In Chinese).

Google Scholar

[11] L. Mariappan, T.S. Kannan and A.M. Umarji: Mater. Chem. Phys, Vol. 75 (2002), p.284.

Google Scholar

[12] D. Bandyopadhyay, l.C. Pathak, I. Mukherjee, S.K. Das, R.G. Ganguly and P. Ramachandrarao: Mater. Res. Bull, Vol. 32 (1997), p.75.

Google Scholar

[13] L.S. Abovyan, H.H. Nersisyan, S.L. Kharatyan, R. Orrù, R. Saiu, G. Cao and D. Zedda: Ceram. Inter, Vol. 27 (2001), p.163.

DOI: 10.1016/s0272-8842(00)00057-2

Google Scholar

[14] G. Brandt: Wear, Vol. 112 (1889), p.39.

Google Scholar

[15] B.Q. Liu, C.Z. Huang, X.Y. Lu, M.L. Gu and H.L. Liu: Ceram. Int, Vol. 33 (2007), p.1475.

Google Scholar

[16] B.Q. Liu, C.Z. Huang, M.L. Gu, H.T. Zhu and H.L. Liu: Mater. Sci. Eng. A, Vol. 460-461 (2007), p.146.

Google Scholar

[17] A.G. Evans: J. Am. Ceram. Soc, Vol. 73 (1990), p.187.

Google Scholar