The Role of the Numerical Simulation in Superplastic Forming Process Analysis and Optimization

Article Preview

Abstract:

Numerical simulation took root in the last few decades in the superplastic forming field as one of the most dominant tools for process analysis and optimization. The big role of the simulation can be found in many areas concerning the study and the implementation of the forming process. The purpose of this paper is to outline some of the main applications of the numerical simulation in superplastic forming that can be found in the material characterization phase, in the simulation of forming tests and in the optimization of the process. A brief overview of results that can be found in literature is given with special regard to Finite Element numerical simulation of metal sheet Superplastic Forming.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-234

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.G. Luckey Jr., P.A. Friedman, K.J. Weinmann: J. Mater. Process. Technol. Vol. 194 (2007), p.30.

Google Scholar

[2] V.S. Senthil Kumar, D. Viswanathan, S. Natarajan: J. Mater. Process. Technol. Vol. 173 (2006), p.247.

Google Scholar

[3] Y.M. Hwang, H.S. Lay: J. Mater. Process. Technol. Vol. 140 (2003), p.426.

Google Scholar

[4] J. Tao, M.A. Keavey: J. Mater. Process. Technol. Vol. 147 (2004), p.111.

Google Scholar

[5] G. Palumbo, D. Sorgente, L. Tricarico, S.H. Zhang, W.T. Zheng, L.X. Zhou, L. M. Ren: Mater. Sci. Forum Vols. 551-552 (2007), p.317.

DOI: 10.4028/www.scientific.net/msf.551-552.317

Google Scholar

[6] R.D. Wood, J. Bonet: J. Mater. Process. Technol. Vol. 60 (1996), p.45.

Google Scholar

[7] J. Bonet, A. Gil, R. D. Wood, R. Said, R. V. Curtis: Comput. Methods Appl. Mech. Engrg. Vol 195 (2006), p.6580.

Google Scholar

[8] H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi: Int. J. Plast. Vol. 17 (2001), p.387.

Google Scholar

[9] K.T. Park, D.Y. Hwang, Y.K. Lee, Y.K. Kim, D.H. Shin: Mater. Sci. Eng. A Vol. 341 (2003), p.273.

Google Scholar

[10] H.B. Genga, S. B. Kang, B. K. Min: Mater. Sci. Eng. A Vol. 373 (2004), p.229.

Google Scholar

[11] N. Furushiro, Y. Umakoshi, K. Warashina: Mater. Sci. Forum Vols. 357-359 (2001), p.249.

Google Scholar

[12] Y. Wang, R.S. Mishra: Mater. Sci. Eng. A Vol. 463 (2007), p.245.

Google Scholar

[13] J. Lin, T.A. Dean: J. Mater. Process. Technol. Vol. 167 (2005), p.354.

Google Scholar

[14] G. Giuliano: Int. J. Adv. Manuf. Technol. Vol. 31 (2006), p.244.

Google Scholar

[15] J-H. Cheng: J. Mater. Process. Technol. Vol. 58 (1996), p.233.

Google Scholar

[16] F.U. Enikeev, A.A. Kruglov: Int. J. Mech. Sci. Vol. 37 (1995), p.473.

Google Scholar

[17] Y. Takayama, N. Furushiro, T. Tozawa, H. Kato: Mater. Sci. Forum Vols. 170-172 (1994), p.561.

Google Scholar

[18] M. Hirohashi, M. Nishizawa: Mater. Sci. Forum Vols. 304-306 (1999), p.693.

Google Scholar

[19] M. A. Khaleel, K. I. Johnson, C. H. Hamilton, M. T. Smith: Int. J. Plast. Vol. 14 (1998), p.1133.

Google Scholar

[20] K.I. Johnson, M.A. Khaleel, C.A. Lavender, S.G. Pitman, J.T. Smith, M.T. Smith, C.H. Hamilton: Mater. Sci. Forum Vols. 170-172 (1994), p.627.

Google Scholar

[21] O.F. Yenihayat, A. Mimaroglu, H. Unal: Mater. Des. Vol. 26 (2005), p.73.

Google Scholar

[22] A. Mimaroglu, O.F. Yenihayat: Mater. Des. Vol. 24 (2003), p.189.

Google Scholar

[23] D. Sorgente, L. Tricarico: Mater. Sci. Forum Vols. 551-552 (2007), p.123.

Google Scholar

[24] A. El-Morsy, N. Akkus, K. Manabe, H. Nishimura: Mater. Sci. Forum Vols. 357-359 (2001), p.587.

Google Scholar

[25] A. El-Morsy, K. Manabe: J. Mater. Process. Technol. Vol. 125-126 (2002), p.772.

Google Scholar

[26] L. Carrino, G. Giuliano, W. Polini: J. Mater. Process. Technol. Vol. 138 (2003), p.417.

Google Scholar

[27] L. Carrino, G. Giuliano: Adv. Perform. Mater. Vol 6 (1999), p.149.

Google Scholar

[28] D. Sorgente, G. Palumbo, L. Tricarico: Key Eng. Mater. Vol. 344 (2007), p.119.

Google Scholar

[29] C.Y. Gao, P. Lours, G. Bernhart: J. Mater. Process. Technol. Vol. 169 (2005), p.281.

Google Scholar

[30] P.E. Krajewski, J.G. Schroth: Mater. Sci. Forum Vols. 551-552 (2007), p.3.

Google Scholar

[31] A. Dutta: Mater. Sci. Eng. A Vol. 371 (2004), p.79.

Google Scholar

[32] Y. -H. Kim, J. -M. Lee, S.S. Hong: J. Mater. Process. Technol. Vol. 112 (2001), p.166.

Google Scholar

[33] K. Kalaichelvan, R. Sivaramakrishnan, D. Dinakaran, A. Joseph Stanley: J. Mater. Process. Technol. Vol. 162-163 (2005), p.519.

Google Scholar

[34] Y. -S. Lee, S. -Y. Lee, J. -H. Lee: J. Mater. Process. Technol. Vol. 112 (2001), p.114.

Google Scholar

[35] A. Huang, A. Lowe, M.J. Cardew-Hall: J. Mater. Process. Technol. Vol. 112 (2001), p.136.

Google Scholar

[36] K.S. Lee, H. Huh, Y.J. Choy: J. Mater. Process. Technol. Vol. 63 (1997), p.684.

Google Scholar

[37] H.L. Xing, K.F. Zhang, Z.R. Wang: J. Mater. Process. Technol. Vol. 151 (2004), p.284.

Google Scholar

[38] K.S. Lee, H. Huh: J. Mater. Process. Technol. Vol. 113 (2001), p.754.

Google Scholar

[39] K.F. Zhang, G.F. Wang, D.Z. Wu, Z.R. Wang: J. Mater. Process. Technol. Vol. 151 (2004), p.54.

Google Scholar

[40] Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng: Int. J. Mach. Tools Manuf. Vol. 48 (2008), p.1509.

Google Scholar

[41] F. Jovane: Int. J. Mech. Sci. Vol. 10 (1968), p.403.

Google Scholar

[42] H. Samekto, K. Roll: Finite Element Analysis of superplastic forming process using LSDYNA, 4th European LS-DYNA Users Conference, Ulm, Germany (2003).

Google Scholar

[43] D. Sorgente, L. Tricarico: A numerical-experimental approach to material characterization and process analysis in the blow forming process, EuroSPF 2008, Carcassonne, France (2008).

Google Scholar

[44] P.S. Bate, D.C. Price, D.J. Barrett, W.T. Roberts: J. Mater. Process. Technol. Vol. 38 (1993), p.589.

Google Scholar

[45] L.C. Chung, J. -H. Cheng: Mater. Sci. Eng. A Vol. 333 (2002), p.146.

Google Scholar

[46] D. Garriga-Majo, R.J. Paterson, R.V. Curtis, R. Said, R.D. Wood, J. Bonet: Dent. Mater. Vol. 20 (2004), p.409.

Google Scholar

[47] M.A. Nazzal, M.K. Khraisheh, F.K. Abu-Farha: J. Mater. Process. Technol. Vol. 191 (2007), p.189.

Google Scholar

[48] G.R. Liu, X. Han: Computational inverse techniques in nondestructive evaluation (CRC Press 2003).

Google Scholar

[49] M. Bellet, E. Massoni, S. Boude: Finite Element Modeling of Superplastic Sheet Forming Processes. Identification of Rheological and Tribological Parameters by Inverse Method, Proceedings of NUMIFORM 2004, Ohio, Columbus, (2004).

DOI: 10.1063/1.1766682

Google Scholar

[50] D. Szeliga, J. Gawad, M. Pietrzyk: Comput. Methods Appl. Mech. Engrg. Vol. 195 (2006), p.6778.

Google Scholar

[51] D. Sorgente, L. Tricarico: Characterizing a superplastic AA5083 alloy by the blow forming technique and numerical finite element analysis, 11th International Scientific Conference on the Contemporary Achievements in Mechanics, Manufacturing and Materials Science CAM3S'2005, Gliwice-Zakopane, Poland (2005).

Google Scholar

[52] J. Qu, Q. Jin, B. Xu: J. Mater. Process. Technol. Vol. 197 (2008), p.212.

Google Scholar

[53] G. Luckey Jr., P. Friedman, K. Weinmann: J. Mater. Process. Technol. Vol. 209 (2009), p.2152.

Google Scholar