High-Strain-Rate Superplastic Flow Mechanism in ZrO2-30vol% Spinel Two-Phase Composite

Article Preview

Abstract:

High-strain-rate superplasticity (HSRS) can be attained in tetragonal ZrO2-30vol% MgAl2O4 spinel composite. In order to examine the flow behavior of the two-phase composite, the standard rule of the mixture model was employed. The strain rate of the composite can be explained by the isostrain model that is predicted from the data set of Al2O3 doped ZrO2 and spinel polycrystals. For the isostrain model, since the strain and strain rate are the same for ZrO2 and spinel phases, the harder ZrO2 phase carries more of the stress in the composite. In order to preserve homogeneous deformation and material continuity, a concomitant accommodation process within the harder ZrO2 grains is also necessary. For HSRS in the ZrO2-spinel composite, therefore, the rate of deformation may be controlled by the slower dislocation recovery process limited by the lattice diffusion within harder ZrO2 grains rather than within spinel grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-338

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. G. Nieh, J. Wadswort and O. D. Sherby, in: Superplasticity in Metals and Ceramics. Cambridge University Press, United Kingdom (1997).

Google Scholar

[2] A. H. Chokshi, T. G. Nieh and J. Wadswort: J. Am. Ceram. Soc., 74 (1991), p.869.

Google Scholar

[3] K. Kajihara, Y. Yoshizawa and T. Sakuma: Acta Mater. 43 (1995), p.1235.

Google Scholar

[4] K. Oka, N. Tabuchi, and T. Takashi: Mat. Sci. Forum, Vol. 304-306 (1999), p.451.

Google Scholar

[5] T. S. Suzuki, Y. Sakka, K. Morita and K. Hiraga: Scripta Mater., 43 (2000), p.705.

Google Scholar

[6] B. -N. Kim, K. Hiraga, K. Morita and Y. Sakka: Nature 413 (2001), p.288.

Google Scholar

[7] B. -N. Kim, K. Hiraga, K. Morita, Y. Sakka, T. Yamada: Scripta Mater., 47 (2002), p.775.

Google Scholar

[8] K. Morita, K. Hiraga and Y. Sakka: J. Am. Ceram. Soc., 85 (2002), p. (1900).

Google Scholar

[9] K. Morita, K. Hiraga, B. -N. Kim, Y. Sakka: J. Mater. Res., 22 (2007), p.801.

Google Scholar

[10] K. Morita, K. Hiraga and B. -N. Kim: Acta Mater., 55 (2007), p.4517.

Google Scholar

[11] T. G. Nieh and J. Wadswort: Acta Mater., 38 (1990), p.1121.

Google Scholar

[12] T. Kondo, Y. Takigawa, Y. Ikuhara and T. Sakuma: Mat. Trans. JIM, 39 (1998), p.1108.

Google Scholar

[13] F. Wakai and H. Kato: Adv. Ceram. Mater., 3 (1988), p.71.

Google Scholar

[14] T. G. Nieh and J. Wadsworth : Acta Mater., 39 (1991), p.3037.

Google Scholar

[15] T. G. Langdon: Metall. Trans. A 13 (1982), p.689.

Google Scholar

[16] M. Jiménez-Melendo et al.: J. Am. Ceram. Soc., 81 (1998), p.2761.

Google Scholar

[17] K. Morita and K. Hiraga : Acta Mater., 50 (2002), p.1075.

Google Scholar

[18] K. Morita, K. Hiraga and B. -N. Kim: Acta Mater., 52 (2004), p.3355.

Google Scholar

[19] T. S. Suzuki, Y. Sakka and K. Hiraga: unpublished data.

Google Scholar

[20] S. Swaroop et al.: Acta Mater., 53 (2005), p.4975.

Google Scholar

[21] Duclos R, Doukhan N, Escaig B. Acta Mater 1982; 30: 1381.

Google Scholar

[22] K. Morita et al.: J. Am. Ceram. Soc., 87 (2004), p.1102.

Google Scholar

[23] J. D. French et al.: J. Am. Ceram. Soc., 77 (1994), p.2857.

Google Scholar