Heat Resistant Ni-Cr-Fe Steels for Superplastic Forming Dies: From Material Microstructure to Die Design

Abstract:

Article Preview

During superplastic forming, dies are subjected to high temperatures and severe environmental conditions. Optimum material grade choice and die design have to take into account all these combined parameters. Microstructure evolution and high temperature mechanical properties are investigated and reported for various Heat Resistant Cast Steels. New die concepts are suggested for energy and cost savings.

Info:

Periodical:

Edited by:

Daniel G. Sanders

Pages:

77-84

Citation:

G. Bernhart et al., "Heat Resistant Ni-Cr-Fe Steels for Superplastic Forming Dies: From Material Microstructure to Die Design", Key Engineering Materials, Vol. 433, pp. 77-84, 2010

Online since:

March 2010

Export:

Price:

$38.00

[1] D.G. Sanders : Mat. Sci. Forum, 304-306, 805-812, (1999).

[2] N. Chandra : Mat. Sci. Forum, 243-245, 643-652. (1997).

[3] P. Barnet, J-Y Moraux : EuroSPF08, France (2008) [hal-00371031 − version 1].

[4] P. Lours, S. Baleix, G. Bernhart : THERMEC 2000, 4-8 dec, 2000, Las Vegas, USA.

[5] A. Martinier : PdD thesis, (2006), Mines Nationale Supérieure des Mines de Paris.

[6] P. Lours, T. Cutard, G. Bernhart, C. Levaillant : Int. Journal of Materials and Products and Technology, SPM1, 2, (2001), 445.

[7] S. Baleix, P. Lours, G. Bernhart : in proceedings of the 8th International Conference on Mechanical Behaviours of Materials. Victoria (Canada) Vol 2, 653-657, (1999).

[8] G. Bernhart, A. Martinier, V. Velay and J-Y Moraux : ICSAM 2009 Conference, 30 june -02 july 2009, Seattle.

[9] A.A. Deshpande, S.B. Leen, T.H. Hyde.: in EuroSPF 2008, France (2008) [hal00337989 − version 1].

[10] S. Baleix, G. Bernhart, P. Lours : Materials Science and Engineering A, Vol 372, n°2, (2002), pp.155-166.

[11] S. Baleix, S. Le Roux, G. Bernhart, P. Lours : Journal of Material Processing Technology, Vol 118/1-3, (2001), pp.322-329.

[12] V. Velay, T. Cutard, N. Guegan: EuroSPF08, France (2008) [hal-00348613 − version 1].

[13] C.Y. Gao, P. Lours, G. Bernhart : International Journal of Processing Technology, vol 169, (2005) pp.281-291.

[14] J., Shang, T.H. Hyde, S.B. Leen : Journal of Strain Analysis, vol 41, no 8, 2006, pp.539-559.

[15] T. Branza, F. Deshaux-Beaume, V. Velay, P. Lours : Journal of materials Processing Technology, Vol 209, N° 2, (2009).

[3] 1.

[10] sε − − =& , 50% Nickel) Fig. 5 : Rupture stress with respect to Ni content and temperature (columnar zone.

[3] 1.

[10] sε − − =& ) Fig. 6: Stress-strain fatigue loops for increasing temperature.

[3] 1.

[10] sε − − =& ) Fig. 7: Strains at the grain size level (Digital Image Correlation on carbides) Fig. 8: Local strain versus extensometer strain 500°C 650°C 750°C 800°C 850°C 900°C 950°C Strain (mm/mm) Stress (MPa) 500°C 650°C 750°C 800°C 850°C 900°C 950°C Strain (mm/mm) Stress (MPa).

DOI: https://doi.org/10.3403/30182385

[50] 100 150 200 250 300 0, 00 0, 01 0, 02 0, 03 0, 04 0, 05 0, 06 Strain (mm/mm) Stress (MPa) 20°C 500° C 750°C 850°C 900°C 950°C.

[50] 100 150 200 250 300 350 400 450 500.

[20] °C 500 °C 750 °C 850 °C 900 °C 950 °C R m (MPa).

[50] % /i.

[35] % /i.

[25] % /i 0, 5 % /i.

[50] 100 150 200 250 300 350 400 450 500.

[20] °C 500 °C 750 °C 850 °C 900 °C 950 °C R m (MPa)R m (MPa).

[50] % /i.

[35] % /i.

[25] % /i 0, 5 % /i.

[50] % /i.

[35] % /i.

[25] % /i 0, 5 % /i.

[1] [2] [3] [4] [5] [6] [7] [8] [9] G M D.

[16] mm.

[1] [2] [3] [4] [5] [6] [7] [8] [9] G M D.

[16] mm.

[1] [2] [3] [4] [5] [6] [7] [8] [9] G M D.

[16] mm.

[16] mm16 mm -20 -10.

[10] [20] [30] [40] [50] [60] colonne gauche colonne milieu Ecart en % -20 -10.

[10] [20] [30] [40] [50] [60] colonne gauche Ecart en %Difference in % Reference : modulus of elasticity given by mechanical extensometer -20 -10.

[10] [20] [30] [40] [50] [60] colonne gauche colonne milieu Ecart en % -20 -10.

[10] [20] [30] [40] [50] [60] colonne gauche Ecart en %Difference in % -20 -10.

[10] [20] [30] [40] [50] [60] colonne gauche colonne milieu Ecart en % -20 -10.

[10] [20] [30] [40] [50] [60] colonne gauche Ecart en %Difference in % Reference : modulus of elasticity given by mechanical extensometer Fig. 9 : Oxidation kinetics of 50% Ni HR Steel Fig. 10 : Spallation kinetic of 50% HR Steel Fig. 11 : Hollow die concept [3] Fig. 12 : Numerical simulation applied to die optimization.

[1] [2] [3] [4] [5] [6] 0 100 200 300 400 500 600 700 Duration (h) 750 °C 800 °C 850 °C 900 °C 950 °C 1000 °C 1050 °C (∆∆∆∆m/S)ox(mg. cm-2).

[1] [2] [3] [4] [5] [6] 0 100 200 300 400 500 600 700 Duration (h) 750 °C 800 °C 850 °C 900 °C 950 °C 1000 °C 1050 °C (∆∆∆∆m/S)ox(mg. cm-2) -0, 5.

0, 5.

[1] 0 50 100 150 200 250 300 350 Duration (h) ∆∆∆∆m/S (mg. cm-2) Oxidation Kinetic Spalling Kinetic ti tc -0, 5.

0, 5.

[1] 0 50 100 150 200 250 300 350 Duration (h) ∆∆∆∆m/S (mg. cm-2) Oxidation Kinetic Spalling Kinetic ti tc Free Convection (Cooling) Nodal temperature (Heating) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C) Cavity Radiation (Heating) Free Convection (Cooling) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C) Free Convection (Cooling) Nodal temperature (Heating) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C) Free Convection (Cooling) Nodal temperature (Heating) Free Convection (Cooling) Nodal temperature (Heating) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C) Cavity Radiation (Heating) Free Convection (Cooling) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C).

DOI: https://doi.org/10.3403/bsen14037