Heat Resistant Ni-Cr-Fe Steels for Superplastic Forming Dies: From Material Microstructure to Die Design

Article Preview

Abstract:

During superplastic forming, dies are subjected to high temperatures and severe environmental conditions. Optimum material grade choice and die design have to take into account all these combined parameters. Microstructure evolution and high temperature mechanical properties are investigated and reported for various Heat Resistant Cast Steels. New die concepts are suggested for energy and cost savings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-84

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.G. Sanders : Mat. Sci. Forum, 304-306, 805-812, (1999).

Google Scholar

[2] N. Chandra : Mat. Sci. Forum, 243-245, 643-652. (1997).

Google Scholar

[3] P. Barnet, J-Y Moraux : EuroSPF08, France (2008) [hal-00371031 − version 1].

Google Scholar

[4] P. Lours, S. Baleix, G. Bernhart : THERMEC 2000, 4-8 dec, 2000, Las Vegas, USA.

Google Scholar

[5] A. Martinier : PdD thesis, (2006), Mines Nationale Supérieure des Mines de Paris.

Google Scholar

[6] P. Lours, T. Cutard, G. Bernhart, C. Levaillant : Int. Journal of Materials and Products and Technology, SPM1, 2, (2001), 445.

Google Scholar

[7] S. Baleix, P. Lours, G. Bernhart : in proceedings of the 8th International Conference on Mechanical Behaviours of Materials. Victoria (Canada) Vol 2, 653-657, (1999).

Google Scholar

[8] G. Bernhart, A. Martinier, V. Velay and J-Y Moraux : ICSAM 2009 Conference, 30 june -02 july 2009, Seattle.

Google Scholar

[9] A.A. Deshpande, S.B. Leen, T.H. Hyde.: in EuroSPF 2008, France (2008) [hal00337989 − version 1].

Google Scholar

[10] S. Baleix, G. Bernhart, P. Lours : Materials Science and Engineering A, Vol 372, n°2, (2002), pp.155-166.

Google Scholar

[11] S. Baleix, S. Le Roux, G. Bernhart, P. Lours : Journal of Material Processing Technology, Vol 118/1-3, (2001), pp.322-329.

Google Scholar

[12] V. Velay, T. Cutard, N. Guegan: EuroSPF08, France (2008) [hal-00348613 − version 1].

Google Scholar

[13] C.Y. Gao, P. Lours, G. Bernhart : International Journal of Processing Technology, vol 169, (2005) pp.281-291.

Google Scholar

[14] J., Shang, T.H. Hyde, S.B. Leen : Journal of Strain Analysis, vol 41, no 8, 2006, pp.539-559.

Google Scholar

[15] T. Branza, F. Deshaux-Beaume, V. Velay, P. Lours : Journal of materials Processing Technology, Vol 209, N° 2, (2009).

Google Scholar

[10] sε − − =& , 50% Nickel) Fig. 5 : Rupture stress with respect to Ni content and temperature (columnar zone.

Google Scholar

[10] sε − − =& ) Fig. 6: Stress-strain fatigue loops for increasing temperature.

Google Scholar

[10] sε − − =& ) Fig. 7: Strains at the grain size level (Digital Image Correlation on carbides) Fig. 8: Local strain versus extensometer strain 500°C 650°C 750°C 800°C 850°C 900°C 950°C Strain (mm/mm) Stress (MPa) 500°C 650°C 750°C 800°C 850°C 900°C 950°C Strain (mm/mm) Stress (MPa).

DOI: 10.31857/s0869-5903275503-524-13797

Google Scholar

[50] 100 150 200 250 300 0, 00 0, 01 0, 02 0, 03 0, 04 0, 05 0, 06 Strain (mm/mm) Stress (MPa) 20°C 500° C 750°C 850°C 900°C 950°C.

Google Scholar

[50] 100 150 200 250 300 350 400 450 500.

Google Scholar

[20] °C 500 °C 750 °C 850 °C 900 °C 950 °C R m (MPa).

Google Scholar

[50] % /i.

Google Scholar

[35] % /i.

Google Scholar

[25] % /i 0, 5 % /i.

Google Scholar

[50] 100 150 200 250 300 350 400 450 500.

Google Scholar

[20] °C 500 °C 750 °C 850 °C 900 °C 950 °C R m (MPa)R m (MPa).

Google Scholar

[50] % /i.

Google Scholar

[35] % /i.

Google Scholar

[25] % /i 0, 5 % /i.

Google Scholar

[50] % /i.

Google Scholar

[35] % /i.

Google Scholar

[25] % /i 0, 5 % /i.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] G M D.

Google Scholar

[16] mm.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] G M D.

Google Scholar

[16] mm.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] G M D.

Google Scholar

[16] mm.

Google Scholar

[16] mm16 mm -20 -10.

Google Scholar

[10] [20] [30] [40] [50] [60] colonne gauche colonne milieu Ecart en % -20 -10.

Google Scholar

[10] [20] [30] [40] [50] [60] colonne gauche Ecart en %Difference in % Reference : modulus of elasticity given by mechanical extensometer -20 -10.

Google Scholar

[10] [20] [30] [40] [50] [60] colonne gauche colonne milieu Ecart en % -20 -10.

Google Scholar

[10] [20] [30] [40] [50] [60] colonne gauche Ecart en %Difference in % -20 -10.

Google Scholar

[10] [20] [30] [40] [50] [60] colonne gauche colonne milieu Ecart en % -20 -10.

Google Scholar

[10] [20] [30] [40] [50] [60] colonne gauche Ecart en %Difference in % Reference : modulus of elasticity given by mechanical extensometer Fig. 9 : Oxidation kinetics of 50% Ni HR Steel Fig. 10 : Spallation kinetic of 50% HR Steel Fig. 11 : Hollow die concept [3] Fig. 12 : Numerical simulation applied to die optimization.

Google Scholar

[1] [2] [3] [4] [5] [6] 0 100 200 300 400 500 600 700 Duration (h) 750 °C 800 °C 850 °C 900 °C 950 °C 1000 °C 1050 °C (∆∆∆∆m/S)ox(mg. cm-2).

Google Scholar

[1] [2] [3] [4] [5] [6] 0 100 200 300 400 500 600 700 Duration (h) 750 °C 800 °C 850 °C 900 °C 950 °C 1000 °C 1050 °C (∆∆∆∆m/S)ox(mg. cm-2) -0, 5.

Google Scholar

[1] 0 50 100 150 200 250 300 350 Duration (h) ∆∆∆∆m/S (mg. cm-2) Oxidation Kinetic Spalling Kinetic ti tc -0, 5.

Google Scholar

[1] 0 50 100 150 200 250 300 350 Duration (h) ∆∆∆∆m/S (mg. cm-2) Oxidation Kinetic Spalling Kinetic ti tc Free Convection (Cooling) Nodal temperature (Heating) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C) Cavity Radiation (Heating) Free Convection (Cooling) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C) Free Convection (Cooling) Nodal temperature (Heating) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C) Free Convection (Cooling) Nodal temperature (Heating) Free Convection (Cooling) Nodal temperature (Heating) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C) Cavity Radiation (Heating) Free Convection (Cooling) Radiation: - Cooling (T∝ = 20°C); - Heating (T ∝ = 900°C).

DOI: 10.3403/bsen14037

Google Scholar