Thermal Conductivities of LaPO4/Al2O3 Composites Fabricated by SPS

Article Preview

Abstract:

The thermal conductivities of the LaPO4/Al2O3 composites that were fabricated by spark plasma sintering (SPS) were determined. The results revealed that their thermal conductivities displayed nearly a slow decrease with increasing temperature from 25oC to 800oC, having the classic 1/T dependence. In addition, the conductivities of the composites decrease monotonously with increasing the LaPO4 content because of the lower thermal conductivity of LaPO4. The calculated conductivities of the composites using Maxwell equation match well the experimental values at both the end members of LaPO4 and Al2O3 being the continuous phase, but showing a little deviation at intermediate composition.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 434-435)

Pages:

123-125

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.B. Davis, D .B. Marshall and P. E.D. Morgan: J. Eur. Ceram. Soc. Vol. 19 (1999), p.2421.

Google Scholar

[2] J.R. Mawdsley, D. Kovar and J.W. Halloran: J. Am. Ceram. Soc. Vol. 83 (2000), p.802.

Google Scholar

[3] J.B. Davis, D.B. Marshall and P.E.D. Morgan: J. Eur. Ceram. Soc. Vol. 20 (2000), p.583.

Google Scholar

[4] J. B. Davis, D. B. Marshall, R. M. Housley, et al.: J. Am. Ceram. Soc. Vol. 81 (1998), p.2169.

Google Scholar

[5] Y. Shiraki: Notebook of Ceramics (Gihou-Dou, Tokyo, Japan, 1972), p.508.

Google Scholar

[6] Y. Hikichi, T. Nomura: J. Am. Ceram. Soc. Vol. 70 (1987), p. c-252.

Google Scholar

[7] Y. Hikichi, T. Ota, T. Hattori: Miner. J. Vol. 19 (1997), p.123.

Google Scholar

[8] P. E. D. Morgan, D. B. Marshall: J. Am. Ceram. Soc. Vol. 78 (1995), p.1553.

Google Scholar

[9] A. B. Du, W. Pan, K. Ahmad, et al.: Int. J. Appl. Ceram. Technol. Vol. 6 (2009), p.236.

Google Scholar

[10] R. G. Wang, W. Pan, J. Chen, et al.: Ceram. Int. Vol. 29 (2003), p.83.

Google Scholar

[11] W. Min, D. Miyahara, K. Yokoi, et al.: Mater. Res. Bull. Vol. 36 (2001), p.939.

Google Scholar

[12] K. Popa, R. J. M. Konings: Thermochim. Acta. Vol. 445 (2006), p.49.

Google Scholar

[13] Y. J. Liang, Y. C. Che: Handbook of Inorganic thermodynamic Data. (Northeastern University Press, Shenyang, China, 1993), p.49.

Google Scholar

[14] K. W. Schlichting, N. P. Padture, and P. G. Klemens: J. Mater. Sci. Vol. 36 (2001), p.3003.

Google Scholar

[15] W. D. Kingery, H. K. Bowen and D. R. Uhlmann: Introduction to Ceramic. 2nd edition (John Wiley & Sons, New York, USA, 1976), p.636.

Google Scholar