Fabrication of High Thermal Conductivity β-Si3N4 Ceramics at Relatively Low Temperature Using MgSiN2 as Additives

Article Preview

Abstract:

Silicon nitride ceramics with MgSiN2 as additives were sintered by hot pressing at 1600° ~ 1750 °C for 1-12 h under uniaxial pressure of 20 MPa. The specimens were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and photothermal deflection spectroscopy. After sintered at 1750°C for 1 h, the thermal conductivity of the material was 90 W·m-1·K-1. The thermal conductivity could remarkably increase to 120 W·m-1·K-1 by prolonging the dwell time from 1 h to 12 h. The present work demonstrated that MgSiN2 additives were effective to improve the thermal conductivity of β-Si3N4 ceramic.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 434-435)

Pages:

783-786

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.S. Haggerty and A. Lightfoot: Ceram. Eng. Sci. Proc. Vol. 16(1995), p.475.

Google Scholar

[2] K. Hirao, K. Watari, H. Hayashi, et al.: MRS Bull. Vol. 26(2001), p.451.

Google Scholar

[3] H. Hayashi, K. Hirao, M. Toriyama, et al.: J. Am. Ceram. Soc. Vol. 84.

Google Scholar

[12] 2001), p.3060.

Google Scholar

[4] H. Yokota and M. Ibukiyama: J. Euro. Ceram. Soc. Vol. 23.

Google Scholar

[8] 2003), p.1751.

Google Scholar

[5] X.W. Zhu, Y. Zhou and K. Hirao: J. Am. Ceram. Soc. Vol. 87.

Google Scholar

[7] 2004), p.1398.

Google Scholar

[6] T. Wasanapiarnpong, S. Wada, M. Imai, et al.: J. Euro. Ceram. Soc. Vol. 26.

Google Scholar

[15] 2006), p.3467.

Google Scholar

[7] X.W. Zhu, Y. Zhou, K. Hirao, et al.: J. Am. Ceram. Soc. Vol. 90.

Google Scholar

[6] 2007), p.1684.

Google Scholar

[8] K. Watari, K. Hirao, M. E. Brito, et al.: J. Mater. Res. Vol. 14.

Google Scholar

[4] 1999), p.1538.

Google Scholar

[9] H. Yokota, H. Abe and M. Ibukiyama: J. Euro. Ceram. Soc. Vol. 23.

Google Scholar

[10] 2003), p.1751.

Google Scholar

[10] N. Hirosaki, S. Ogata, C. Kocer, et al.: Phys. Review B. Vol. 65(2002), p.1341101.

Google Scholar

[11] N. Hirosaki, Y. Okamoto, M. Ando, et al.: J. Am. Ceram. Soc. Vol. 79.

Google Scholar

[11] 1996), p.2878.

Google Scholar

[12] X.W. Zhu, H. Hayashi, Y. Zhou, et al.: J. Mater. Res., Vol. 19.

Google Scholar

[11] 2004), p.3270.

Google Scholar

[13] F.F. Lange, J. Am. Ceram. Soc. Vol. 56.

Google Scholar

[10] 1973), p.518.

Google Scholar

[14] A. de Pablos, M. I. Osendi and P. Miranzo: J. Am. Ceram. Soc. Vol. 85.

Google Scholar

[1] 2002), p.200.

Google Scholar

[15] H. Miyazaki, H. Hyuga, Y. Yoshizawa, et al.: J. Euro. Ceram. Soc. Vol. 29.

Google Scholar

[8] 2009), p.1535.

Google Scholar

[16] M. Kitayama, K. Hirao, A. Tsuge, et al.: J. Am. Ceram. Soc. Vol. 83.

Google Scholar

[8] 2000), p. (1985).

Google Scholar

[17] G.H. Peng, G.J. Jiang, H.R. Zhuang, et al.: Mater. Sci. Eng. A. Vol. 397(2005), p.65.

Google Scholar

[18] P.O. Käll, Chem. Scr. Vol. 28(1988), p.439.

Google Scholar