Reaction Assisted Ultrasonic Consolidated TiNi

Article Preview

Abstract:

This investigation has examined the feasibility of fabricating near-net shape components containing TiNi shape memory constituents by combining the attributes of ultrasonic consolidation and reaction heat treatment. An optimization design of experiment was conducted to determine the ultrasonic consolidation control parameters, e.g., sonotrode rotational velocity, amplitude and normal force, which would result in the maximum weld quality as defined by the linear weld density. Subsequent thermal treatment of the consolidated compact resulted in the formation of a graded Ti-TiNi-Ni microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-155

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Otsuka and C.M. Wayman, Shape Memory Materials (Cambridge University Press, UK 1999).

Google Scholar

[2] B. -Y. Li, L. -J. Rong and Y. -Y. Li, Mat'ls Sci. & Eng. Vol. A281 (2000), p.169.

Google Scholar

[3] B. -Y. Li, L. -J. Rong and Y. -Y. Li, Intermetallics Vol. 8 (2000), p.643.

Google Scholar

[4] B. Bertheville and J. -E. Bidaux, Jn of Alloys and Comp. Vol. 387 (2005), p.211.

Google Scholar

[5] M.D. McNeese, D.C. Lagoudas and T.C. Pollock, Mat'ls Sci. & Eng. Vol. A280 (2000), p.334.

Google Scholar

[6] S.K. Sadrnezhaad, A.R. Selahi, Mat'ls & Man. Proc. Vol. 19 (2004), p.475.

Google Scholar

[7] W. Maziarz, J. Dutkiewicz, J.V. Humbeeck, T. Czepe, Mat'ls Sci. & Eng. Vol. A375-377 (2004), p.844.

Google Scholar

[8] M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs and H.P. Buchkremer, D. Stover, Mat'ls Sci. & Eng. Vol. A337 (2002), p.254.

Google Scholar

[9] B. -Y. Li, L. -J. Rong, Y. -Y. Li and V.E. Gjunter, Acta Mater. Vol. 48 (2000), p.3895.

Google Scholar

[10] C.L. Yeh and W.Y. Sung, Jn of Alloys and Comp. Vol. 376 (2004), p.79.

Google Scholar

[11] A.M. Locci, R. Orru, G. Cao and Z.A. Munir, Intermetallics Vol. 11 (2003), p.555.

Google Scholar

[12] A. Gyobu, Y. Kawamura, H. Horikawa and T. Saburi, Mat'ls Sci. & Eng. Vol. A273-275 (1999), p.749.

Google Scholar

[13] A. Ohta, S. Bhansali, I. Kishimoto and A. Umeda, Sensors and Actuators Vol. 86 (2000), p.165.

Google Scholar

[14] H. Cho, H.Y. Kim and S. Miyazaki, Sci. & Tech. of Adv. Mat'ls Vol. 6 (2005), p.678.

Google Scholar

[15] G. F. Bastin and G. D. Rieck, Met. Trans. Vol. 5 (1974), p.1817.

Google Scholar

[16] G. F. Bastin and G. D. Rieck, Met. Trans. Vol. 5 (1974), p.1827.

Google Scholar

[17] H. Inoue, M. Ishio and T. Takasugi, Acta Mater. Vol. 51 (2003), p.6373.

Google Scholar

[18] D. -S. Chung, J.K. Kim and M. Enoki, Mat'ls Science Forum Vol. 475-479 (2005), p.1521.

Google Scholar

[19] P. Maheshwari, K. J. Ganesh and A. Suresh, Mat'ls Science & Tech. (2005) p.53.

Google Scholar

[20] H. -S. Ding, J. -M. Lee, B. -R. Lee, S. -B. Kang and T. -H. Nam, Mat'ls Sci & Eng. Vol. A444 (2007), p.265.

Google Scholar

[21] M.S. Domack, F.M. Baughman, Rapid Prototyping Jn. Vol. 11 (2005), p.41.

Google Scholar

[22] D.R. White, Adv. Mat'ls & Proc. (2003) 64.

Google Scholar

[23] M. Kukalov and H. J. Rack, Jn Eng. Mat'ls & Tech. Vol. 131 (2009), p.21006.

Google Scholar

[24] M. Kukalov and H. J. Rack, Rapid Prototyping Jn. Vol. 16 (2010) in press.

Google Scholar