[1]
E. Hupperty, Electrochem. Met. Ind. 3 (1905) 35.
Google Scholar
[2]
W. Kroll, Method for Manufacturing Titanium and Alloys Thereof, German Patent Application July 10, 1937, U.S. Patent Application July 6, 1938, U.S. Patent 2, 205, 854.
Google Scholar
[3]
W. Kroll, Tr. Electrochem. Soc. 78 (1940) 35-47.
Google Scholar
[4]
H. Zheng, H. Ito and T. Okake, Materials Transactions, Vol 48, No 8 (2007) p.2244 to 2251.
Google Scholar
[5]
J.C. Withers, et. al., Novel Processing to Produce Ti and Ti Alloy Powders on a Continuous Basis, International Titanium Conference 2008, Hawaii, Conference Proceedings available at ITA.
Google Scholar
[6]
O. Tokeda and T. Okabe, J. of Alloys and Compounds 456 (2008) 376 - 383.
Google Scholar
[7]
CH. R. V.S. Nagesh, CH. S. Rao, N.B. Ballad and P.K. Rao, Metallurgical and Materials Transactions B, Vol 35B, Feb 2004 - 65.
Google Scholar
[8]
H. Kametani and Y. Kurihara, Titanium 95 Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, Vol 3, pp.2602-09.
Google Scholar
[9]
G.R.B. Elliot, JOM, 1998, Vol 50 (9), pp.48-49.
Google Scholar
[10]
H.Y. Sohn, JOM, 1998 Vol 50 (9), p.5051.
Google Scholar
[11]
T.N. Deura and K. Ono, Metall. Mater. Trans. B, 1999, Vol 30B, pp.403-10.
Google Scholar
[12]
R.O. Suzuki, T.N. Harada, T. Matsunaga, T.N. Deura, and K. Ono, Metall. Mater. Trans. B, 1999, Vol 30B, pp.403-10.
Google Scholar
[13]
A. Fuwa and S. Takoya, JOM, Oct 2005, pp.56-60.
Google Scholar
[14]
D. Moroish, J. Mater. Sci. Soc. Japan, 49 (2000), pp.1133-1142.
Google Scholar
[15]
T. Takenaka et al., J. Electrochem. Soc. Japan, 67 (1999), pp.661-668.
Google Scholar
[16]
K. Ono and R. Suzuki, JOM, 54 (2) (2002), pp.59-61.
Google Scholar
[17]
T.H. Okabe and D.R. Sadoway, J. Mater. Res., 12 (1998), pp.3327-3377.
Google Scholar
[18]
H.R. Larson and T.W. Eager, JOM, 50 (9) (1998), pp.56-57.
Google Scholar
[19]
E.H. Kraft, Cost-Affordable Titanium, ed. F.H. Froes, M.A. Imam, and D. Fray (Warrendale, PA: TMS 2004), pp.27-34.
Google Scholar
[20]
F.S. Wartman, D.H. Baker, J.R. Nettle, and V.F. Homme, J. Electrochem. Soc., 1954, Vol 101, pp.507-13.
Google Scholar
[21]
A.N. Petrunko, N.V. Galitsky, N.A. Pampooshko, S.I. Denisov, and A.E. Andeev, Titanium and Titanium Alloys-Scientific and Technological Aspects, J.C. Williams and A.E. Belov, eds., Plenum Press, New York, NY, 1982, Vol 1, pp.101-06.
Google Scholar
[22]
F. Lukashenko, N.K. Zinovieva, V.P. Tereckin and P. Feofanov, Trans. Titani. Ego Splavy, SSSR, 1961, Vol 99 (6), pp.14-20.
Google Scholar
[23]
V.D. Savin, Izv Vyssh. Ucheb Zaved., Tsvet Met., 1970, Vol 13 (5), pp.63-68.
Google Scholar
[24]
S.V. Ogurtsov, Titanium and Titanium Alloys-Scientific and Technological Aspects, J.C. Williams and A.E. Belov, eds., Plenum Press, New York, NY, 1982, Vol 1, pp.41-61.
Google Scholar
[25]
V.A. Reznichenko, Titanium and Titanium Alloys-Scientific and Technological Aspects, J.C. Williams and A.E. Belov, eds., Plenum Press, New York, NY, 1982, Vol 1, pp.63-77.
Google Scholar
[26]
G. Zhang, O. Ostrovski, Metallurgical and Materials Transactions B, Vol 31B, Feb 2000, p.129.
Google Scholar
[27]
O. Takeda and T.H. Okabe, Materials Transactions, Vol 47, No 4 (2006), pp.1145-1154.
Google Scholar
[28]
R.O. Suzaki, et. al., Metallurgical and Materials Transactions B, Vol 30B, June 1999, pg 403.
Google Scholar
[29]
T.N. Deura, et. al., Metallurgical and Materials Transaction B, Vol 29B, Dec 1998, pg 1167.
Google Scholar
[30]
Leone, O.Q., Knudsen, H. and Couch, D.E. -High-purity titanium electrowon from titanium tetrachloride. ‖ J.O. M 19(3)(1967)18-23.
DOI: 10.1007/bf03378547
Google Scholar
[31]
L. Reimert and M. Rand, J. Electrochem Soc., April 1964, Vol 111, No 4.
Google Scholar
[32]
A. Myhren, et. al., J. Of Metals, May (1968).
Google Scholar
[33]
R. MacMullin, J. Electrochem Soc., November 1976, pp 359C-368C.
Google Scholar
[34]
M. Alpert, et. al., J. Electrochem Soc., Vol 104, No 9, September (1957).
Google Scholar
[35]
M. Alpert, et. Al., J. Electrochem Soc., Vol 106, No 2, February (1959).
Google Scholar
[36]
Priscu, J.C. -Titanium electrowinning cell. ‖ Symposium on Electrometallurgy, Proceedings AIME Extractive Metallurgy Div., Cleveland Ohio, December 1968, pages 83-91.
Google Scholar
[37]
E. Poulsen and J. Hall, J. of Metals, June (1983).
Google Scholar
[38]
G. Cobel, et. al., Proceedings of the Fourth International Conference on Titanium, Kyoto, Japan 1980, p.1969-(1976).
Google Scholar
[39]
May Cobel, G., Fisher, J., and Snyder, L. -Electrowinning of titanium from titanium tetrachloride. ‖ Proceedings 4th International Conference on Titanium, May 1980, Kyoto, Japan.
Google Scholar
[40]
DiMaria, E. -RMI gets license to make a new type of titanium. ‖ Metal Working News, February 1st, (1988).
Google Scholar
[41]
Fray, D.J., Farthing, T., and Chen, G.Z. -Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. ‖ Nature, 407(2000)361-364.
DOI: 10.1038/35030069
Google Scholar
[42]
Kraft, E.H. -Summary of Emerging Titanium Cost Reduction Technologies. ‖ Study sponsored by the United States Dept. of Energy (DOE) and Oak Ridge National Laboratory (ORNL), EHK Technologies, Burlington, WA, January (2004).
Google Scholar
[43]
Withers, J.C., and Loutfy, R.O. -A New Novel Electrolytic Process to Produce Titanium. ‖ 19th Annual ITA Conference, Monterey, CA (2003).
Google Scholar
[44]
Withers, J.C., and Loutfy, R.O. -A New Novel Electrolytic Process to Produce Titanium‖ Proceedings 2004 TMS Annual Meeting, Charlotte, NC, March 14-18, (2004).
Google Scholar
[45]
Withers, J.C., John Laughlin, and Loutfy, R.O. -The Production of Titanium from a Composite Anode. ‖ Proceedings 2007 TMS Annual Meeting, Orlando, FL, Orlando, FL, February 25-March 1, (2007).
Google Scholar
[46]
Army SBIR Contract W911QX-04-C-0009.
Google Scholar
[47]
DARPA Contract MDA972-03-C-0034.
Google Scholar
[48]
DARPA Agreement HR0011-06-3-0007.
Google Scholar
[49]
G. Z. Chen, D. J. Fray, Electro-Deoxidation of Metal Oxides, Light Metals, TMS (2001).
Google Scholar
[50]
C. Schwandt and D. L. Fray, Determination of the Kinetics Pathway in the Electrochemical Reduction of Titanium Dioxide in Molten Calcium Chloride, Electroctimica Acta 51, 2005, 66-76.
DOI: 10.1016/j.electacta.2005.03.048
Google Scholar
[51]
T. H. Okabe, T. Oishi, and K. Ono, Preparation and Characterization of Extra-Low-Oxygen Titanium, Journal of Alloys and Compounds, 184, (1992), 43-56, JALCOM 160.
DOI: 10.1016/0925-8388(92)90454-h
Google Scholar
[52]
T. H. Okabe, M. Nakamura, T. Oishi, and K. Ono, Electrochemical Deoxidation of Titanium, Metallurgical Transactions B, Volume 24B, June 1993, 449.
DOI: 10.1007/bf02666427
Google Scholar
[53]
Ryosuke, O. Suzuki, Masayuki Aizawa, Katsutoshi Ono, Calcium-Deoxidation of Niobium and Titanium in Ca-Saturated CaCl2 Molten Salt, Journal of Alloys and Compounds, 228, (1999), 173-182.
DOI: 10.1016/s0925-8388(99)00116-4
Google Scholar
[54]
Katsutoshi Ono and Ryosuke O. Suzuki, A New Concept for Producing Ti Sponge: Calciothermic Reduction, JOM, February (2002).
DOI: 10.1007/bf02701078
Google Scholar
[55]
Ryosuke O. Suzuki and Katsutoshi Ono, A New Concept of Sponge Titanium Production by Calciothermic Reduction of Titanium Oxide in the Molten CaCl2, Electrochemical Society Proceedings, Volume 2002-19.
DOI: 10.1149/200219.0810pv
Google Scholar
[56]
Ryosuke O. Suzuki, Koh Teranuma, and Katsutohi Ono, Calciothermic Reduction of Titanium Oxide and In-Situ Electrolysis in Molten CaCl2, Metallurgical and Materials Transitions B, Volume 34B, June 2003-287.
DOI: 10.1007/s11663-003-0074-1
Google Scholar
[57]
Ryosuke O. Suzuki and Shuichi Inoue, Calciothermic Reduction of Titanium Oxide in Molten CaCl2, Metallurgical and Materials Transaction B, Volume 34B, June 2003-277.
DOI: 10.1007/s11663-003-0073-2
Google Scholar
[58]
Ryosuke O. Suzuki, Calciothermic Reduction of TiO2 and In-Situ Electrolysis of CaO in the Molten CaCl2, Journal of Physics and Chemistry of Solids, 66, (2005), 461-465.
DOI: 10.1016/j.jpcs.2004.06.041
Google Scholar
[59]
U.S. Patent 2, 722, 509 and 2, 904, 426.
Google Scholar
[60]
V. Ananth et. al., Single Step Electrolytic Production of titanium, Trans. Indian Inst. Met., Vol 51, No 5, Oct 1998, pp.339-403.
Google Scholar
[61]
Shuqiang Jiao, Xiaotong Hu, Hongmin Zhu, Titanium Electrolysis using TiCxOy Anode prepared through Carbothermic Reduction of Titanium Dioxide, 7th International Symposium on Molten Salts Chemistry and Technology, 29 August - 2 September, 2005, Toulouse, France.
Google Scholar
[62]
Hongmin Zhu, Shuqiang Jiao and Xuefan, P.R. China Patent Publication No. CN1712571A, Application No. 20051001684. 6, Method of Preparation of Pure Titanium using Anode Electrolysis of Titanium (1) Oxide/Titanium Carbide Soluble solid Solution, December 28, (2005).
Google Scholar
[63]
Shuqiang Jiao and Hongmin Zhu, Electrolysis of Ti2CO solid Solution prepared by TiC and TiO2, J. Alloys and Compounds (2006).
DOI: 10.1016/j.jallcom.2006.08.016
Google Scholar
[64]
Shuqiang Jiao and Hongmin Zhu, J. Mater. Res., Vol 21, No 9, Sept (2006).
Google Scholar
[65]
Withers, J.C., and Loutfy, R.O. -A New Novel Electrolytic Process to Produce Titanium. ‖ 19th Annual ITA Conference, Monterey, CA (2003).
Google Scholar
[66]
Withers, J.C., and Loutfy, R.O. -A New Novel Electrolytic Process to Produce Titanium‖ Proceedings 2004 TMS Annual Meeting, Charlotte, NC, March 14-18, (2004).
Google Scholar
[67]
Withers, J.C., John Laughlin, and Loutfy, R.O. -The Production of Titanium from a Composite Anode. ‖ Proceedings 2007 TMS Annual Meeting, Orlando, FL, Orlando, FL, February 25-March 1, (2007).
Google Scholar
[68]
C. Moller, First International Round Table on Titanium Production in Molten Salts, Cologne, Germany, March 2-4, (2008).
Google Scholar
[69]
C. Moller and B. Friedrich, Molten salt electrolysis of Titanium using a TiO2-C composite anode in halide electrolytes, 2009 ITA Conference, Hawaii.
Google Scholar