The Electrolytic Production of Ti from a TiO2 Feed (The DARPA Sponsored Program)

Article Preview

Abstract:

DARPA instituted an Initiative in Titanium in 2003 to produce titanium, alternatively to the Kroll process, in a billet form for under $4/lb. This DARPA sponsored program has gone into Phase II consisting of utilizing ore/TiO2 as a feed. The TiO2 is carbothermically reduced to a suboxide-carbide (Ti:O:C) which is used anodically to resupply the titanium content in an electrolysis process that deposits titanium in a powder morphology. The deposited powder is uniquely stripped from the cathodes and harvested in a separate stream that permits continuous electrolytic processing to produce titanium at an estimated cost about ½ the Kroll process. Oxygen contents less than 500 ppm are achievable with particle sizes in the desired range for powder metallurgy applications. The process has been demonstrated on a continuous basis and is in the stage of scaling-up to 500 lbs/day.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-74

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Hupperty, Electrochem. Met. Ind. 3 (1905) 35.

Google Scholar

[2] W. Kroll, Method for Manufacturing Titanium and Alloys Thereof, German Patent Application July 10, 1937, U.S. Patent Application July 6, 1938, U.S. Patent 2, 205, 854.

Google Scholar

[3] W. Kroll, Tr. Electrochem. Soc. 78 (1940) 35-47.

Google Scholar

[4] H. Zheng, H. Ito and T. Okake, Materials Transactions, Vol 48, No 8 (2007) p.2244 to 2251.

Google Scholar

[5] J.C. Withers, et. al., Novel Processing to Produce Ti and Ti Alloy Powders on a Continuous Basis, International Titanium Conference 2008, Hawaii, Conference Proceedings available at ITA.

Google Scholar

[6] O. Tokeda and T. Okabe, J. of Alloys and Compounds 456 (2008) 376 - 383.

Google Scholar

[7] CH. R. V.S. Nagesh, CH. S. Rao, N.B. Ballad and P.K. Rao, Metallurgical and Materials Transactions B, Vol 35B, Feb 2004 - 65.

Google Scholar

[8] H. Kametani and Y. Kurihara, Titanium 95 Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, Vol 3, pp.2602-09.

Google Scholar

[9] G.R.B. Elliot, JOM, 1998, Vol 50 (9), pp.48-49.

Google Scholar

[10] H.Y. Sohn, JOM, 1998 Vol 50 (9), p.5051.

Google Scholar

[11] T.N. Deura and K. Ono, Metall. Mater. Trans. B, 1999, Vol 30B, pp.403-10.

Google Scholar

[12] R.O. Suzuki, T.N. Harada, T. Matsunaga, T.N. Deura, and K. Ono, Metall. Mater. Trans. B, 1999, Vol 30B, pp.403-10.

Google Scholar

[13] A. Fuwa and S. Takoya, JOM, Oct 2005, pp.56-60.

Google Scholar

[14] D. Moroish, J. Mater. Sci. Soc. Japan, 49 (2000), pp.1133-1142.

Google Scholar

[15] T. Takenaka et al., J. Electrochem. Soc. Japan, 67 (1999), pp.661-668.

Google Scholar

[16] K. Ono and R. Suzuki, JOM, 54 (2) (2002), pp.59-61.

Google Scholar

[17] T.H. Okabe and D.R. Sadoway, J. Mater. Res., 12 (1998), pp.3327-3377.

Google Scholar

[18] H.R. Larson and T.W. Eager, JOM, 50 (9) (1998), pp.56-57.

Google Scholar

[19] E.H. Kraft, Cost-Affordable Titanium, ed. F.H. Froes, M.A. Imam, and D. Fray (Warrendale, PA: TMS 2004), pp.27-34.

Google Scholar

[20] F.S. Wartman, D.H. Baker, J.R. Nettle, and V.F. Homme, J. Electrochem. Soc., 1954, Vol 101, pp.507-13.

Google Scholar

[21] A.N. Petrunko, N.V. Galitsky, N.A. Pampooshko, S.I. Denisov, and A.E. Andeev, Titanium and Titanium Alloys-Scientific and Technological Aspects, J.C. Williams and A.E. Belov, eds., Plenum Press, New York, NY, 1982, Vol 1, pp.101-06.

Google Scholar

[22] F. Lukashenko, N.K. Zinovieva, V.P. Tereckin and P. Feofanov, Trans. Titani. Ego Splavy, SSSR, 1961, Vol 99 (6), pp.14-20.

Google Scholar

[23] V.D. Savin, Izv Vyssh. Ucheb Zaved., Tsvet Met., 1970, Vol 13 (5), pp.63-68.

Google Scholar

[24] S.V. Ogurtsov, Titanium and Titanium Alloys-Scientific and Technological Aspects, J.C. Williams and A.E. Belov, eds., Plenum Press, New York, NY, 1982, Vol 1, pp.41-61.

Google Scholar

[25] V.A. Reznichenko, Titanium and Titanium Alloys-Scientific and Technological Aspects, J.C. Williams and A.E. Belov, eds., Plenum Press, New York, NY, 1982, Vol 1, pp.63-77.

Google Scholar

[26] G. Zhang, O. Ostrovski, Metallurgical and Materials Transactions B, Vol 31B, Feb 2000, p.129.

Google Scholar

[27] O. Takeda and T.H. Okabe, Materials Transactions, Vol 47, No 4 (2006), pp.1145-1154.

Google Scholar

[28] R.O. Suzaki, et. al., Metallurgical and Materials Transactions B, Vol 30B, June 1999, pg 403.

Google Scholar

[29] T.N. Deura, et. al., Metallurgical and Materials Transaction B, Vol 29B, Dec 1998, pg 1167.

Google Scholar

[30] Leone, O.Q., Knudsen, H. and Couch, D.E. -High-purity titanium electrowon from titanium tetrachloride. ‖ J.O. M 19(3)(1967)18-23.

DOI: 10.1007/bf03378547

Google Scholar

[31] L. Reimert and M. Rand, J. Electrochem Soc., April 1964, Vol 111, No 4.

Google Scholar

[32] A. Myhren, et. al., J. Of Metals, May (1968).

Google Scholar

[33] R. MacMullin, J. Electrochem Soc., November 1976, pp 359C-368C.

Google Scholar

[34] M. Alpert, et. al., J. Electrochem Soc., Vol 104, No 9, September (1957).

Google Scholar

[35] M. Alpert, et. Al., J. Electrochem Soc., Vol 106, No 2, February (1959).

Google Scholar

[36] Priscu, J.C. -Titanium electrowinning cell. ‖ Symposium on Electrometallurgy, Proceedings AIME Extractive Metallurgy Div., Cleveland Ohio, December 1968, pages 83-91.

Google Scholar

[37] E. Poulsen and J. Hall, J. of Metals, June (1983).

Google Scholar

[38] G. Cobel, et. al., Proceedings of the Fourth International Conference on Titanium, Kyoto, Japan 1980, p.1969-(1976).

Google Scholar

[39] May Cobel, G., Fisher, J., and Snyder, L. -Electrowinning of titanium from titanium tetrachloride. ‖ Proceedings 4th International Conference on Titanium, May 1980, Kyoto, Japan.

Google Scholar

[40] DiMaria, E. -RMI gets license to make a new type of titanium. ‖ Metal Working News, February 1st, (1988).

Google Scholar

[41] Fray, D.J., Farthing, T., and Chen, G.Z. -Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. ‖ Nature, 407(2000)361-364.

DOI: 10.1038/35030069

Google Scholar

[42] Kraft, E.H. -Summary of Emerging Titanium Cost Reduction Technologies. ‖ Study sponsored by the United States Dept. of Energy (DOE) and Oak Ridge National Laboratory (ORNL), EHK Technologies, Burlington, WA, January (2004).

Google Scholar

[43] Withers, J.C., and Loutfy, R.O. -A New Novel Electrolytic Process to Produce Titanium. ‖ 19th Annual ITA Conference, Monterey, CA (2003).

Google Scholar

[44] Withers, J.C., and Loutfy, R.O. -A New Novel Electrolytic Process to Produce Titanium‖ Proceedings 2004 TMS Annual Meeting, Charlotte, NC, March 14-18, (2004).

Google Scholar

[45] Withers, J.C., John Laughlin, and Loutfy, R.O. -The Production of Titanium from a Composite Anode. ‖ Proceedings 2007 TMS Annual Meeting, Orlando, FL, Orlando, FL, February 25-March 1, (2007).

Google Scholar

[46] Army SBIR Contract W911QX-04-C-0009.

Google Scholar

[47] DARPA Contract MDA972-03-C-0034.

Google Scholar

[48] DARPA Agreement HR0011-06-3-0007.

Google Scholar

[49] G. Z. Chen, D. J. Fray, Electro-Deoxidation of Metal Oxides, Light Metals, TMS (2001).

Google Scholar

[50] C. Schwandt and D. L. Fray, Determination of the Kinetics Pathway in the Electrochemical Reduction of Titanium Dioxide in Molten Calcium Chloride, Electroctimica Acta 51, 2005, 66-76.

DOI: 10.1016/j.electacta.2005.03.048

Google Scholar

[51] T. H. Okabe, T. Oishi, and K. Ono, Preparation and Characterization of Extra-Low-Oxygen Titanium, Journal of Alloys and Compounds, 184, (1992), 43-56, JALCOM 160.

DOI: 10.1016/0925-8388(92)90454-h

Google Scholar

[52] T. H. Okabe, M. Nakamura, T. Oishi, and K. Ono, Electrochemical Deoxidation of Titanium, Metallurgical Transactions B, Volume 24B, June 1993, 449.

DOI: 10.1007/bf02666427

Google Scholar

[53] Ryosuke, O. Suzuki, Masayuki Aizawa, Katsutoshi Ono, Calcium-Deoxidation of Niobium and Titanium in Ca-Saturated CaCl2 Molten Salt, Journal of Alloys and Compounds, 228, (1999), 173-182.

DOI: 10.1016/s0925-8388(99)00116-4

Google Scholar

[54] Katsutoshi Ono and Ryosuke O. Suzuki, A New Concept for Producing Ti Sponge: Calciothermic Reduction, JOM, February (2002).

DOI: 10.1007/bf02701078

Google Scholar

[55] Ryosuke O. Suzuki and Katsutoshi Ono, A New Concept of Sponge Titanium Production by Calciothermic Reduction of Titanium Oxide in the Molten CaCl2, Electrochemical Society Proceedings, Volume 2002-19.

DOI: 10.1149/200219.0810pv

Google Scholar

[56] Ryosuke O. Suzuki, Koh Teranuma, and Katsutohi Ono, Calciothermic Reduction of Titanium Oxide and In-Situ Electrolysis in Molten CaCl2, Metallurgical and Materials Transitions B, Volume 34B, June 2003-287.

DOI: 10.1007/s11663-003-0074-1

Google Scholar

[57] Ryosuke O. Suzuki and Shuichi Inoue, Calciothermic Reduction of Titanium Oxide in Molten CaCl2, Metallurgical and Materials Transaction B, Volume 34B, June 2003-277.

DOI: 10.1007/s11663-003-0073-2

Google Scholar

[58] Ryosuke O. Suzuki, Calciothermic Reduction of TiO2 and In-Situ Electrolysis of CaO in the Molten CaCl2, Journal of Physics and Chemistry of Solids, 66, (2005), 461-465.

DOI: 10.1016/j.jpcs.2004.06.041

Google Scholar

[59] U.S. Patent 2, 722, 509 and 2, 904, 426.

Google Scholar

[60] V. Ananth et. al., Single Step Electrolytic Production of titanium, Trans. Indian Inst. Met., Vol 51, No 5, Oct 1998, pp.339-403.

Google Scholar

[61] Shuqiang Jiao, Xiaotong Hu, Hongmin Zhu, Titanium Electrolysis using TiCxOy Anode prepared through Carbothermic Reduction of Titanium Dioxide, 7th International Symposium on Molten Salts Chemistry and Technology, 29 August - 2 September, 2005, Toulouse, France.

Google Scholar

[62] Hongmin Zhu, Shuqiang Jiao and Xuefan, P.R. China Patent Publication No. CN1712571A, Application No. 20051001684. 6, Method of Preparation of Pure Titanium using Anode Electrolysis of Titanium (1) Oxide/Titanium Carbide Soluble solid Solution, December 28, (2005).

Google Scholar

[63] Shuqiang Jiao and Hongmin Zhu, Electrolysis of Ti2CO solid Solution prepared by TiC and TiO2, J. Alloys and Compounds (2006).

DOI: 10.1016/j.jallcom.2006.08.016

Google Scholar

[64] Shuqiang Jiao and Hongmin Zhu, J. Mater. Res., Vol 21, No 9, Sept (2006).

Google Scholar

[65] Withers, J.C., and Loutfy, R.O. -A New Novel Electrolytic Process to Produce Titanium. ‖ 19th Annual ITA Conference, Monterey, CA (2003).

Google Scholar

[66] Withers, J.C., and Loutfy, R.O. -A New Novel Electrolytic Process to Produce Titanium‖ Proceedings 2004 TMS Annual Meeting, Charlotte, NC, March 14-18, (2004).

Google Scholar

[67] Withers, J.C., John Laughlin, and Loutfy, R.O. -The Production of Titanium from a Composite Anode. ‖ Proceedings 2007 TMS Annual Meeting, Orlando, FL, Orlando, FL, February 25-March 1, (2007).

Google Scholar

[68] C. Moller, First International Round Table on Titanium Production in Molten Salts, Cologne, Germany, March 2-4, (2008).

Google Scholar

[69] C. Moller and B. Friedrich, Molten salt electrolysis of Titanium using a TiO2-C composite anode in halide electrolytes, 2009 ITA Conference, Hawaii.

Google Scholar