Terahertz Fabry-Perot Interferometer Constructed by Metallic Meshes with Micrometer Period and High Ratio of Linewidth/Period

Article Preview

Abstract:

The possibility of constructing terahertz Fabry-Perot interferometer using metallic meshes with micrometer period and high ratio of linewidth/period is investigated, and the effectivity of traditional equivalent circuit method is verified by FDTD method. Simulation shows that the reflectance and transmittance of this kind of meshes calculated by equivalent circuit method have considerable deviation from those obtained by vector analysis of FDTD, so equivalent circuit method can be used to roughly evaluate the properties of this kind of metallic meshes. By using a metallic mesh with the period of 5 micrometers and the ratio of linewidth/period of 0.8, a finesse larger than 1100 can be achieved while the peak transmittance is still larger than 0.2 for a Fabry-Perot interferometer. It is therefore concluded that a high-quality terahertz Fabry-Perot interferometer can be constructed by using metallic meshes with micrometer period and high ratio of linewidth/period.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

286-290

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.E. Tucker and P.A.R. Ade: Proceeding of 32nd International Conference on International Conference on Infrared and Millimeter Waves, and 15th International Conference on Terahertz Electronics (2007), p.973.

DOI: 10.1109/icimw.2007.4516815

Google Scholar

[2] J.W. Cleary, C.J. Fredricksen, A.V. Muravjov, J. Enz, M.V. Dolguikh, T.W. D. Bosq, R.E. Peale, W.R. Folks, S. Pandey, G. Boreman and O. Edwards, in: Terahertz and Gigahertz Electronics and Photonics VI, edited by Kurt J. Linden, Laurence P. Sadwick, Proc. SPIE. Vol. 6472 (2007).

DOI: 10.1117/12.700718

Google Scholar

[3] G.D. Holah and O.A. Simpson: Int. J. Infrared Millimet. Waves. Vol. 3 (1982), p.667.

Google Scholar

[4] M.S. Durschlag and T.A. DeTemple: Appl. Opt. Vol. 20 (1981), p.1245.

Google Scholar

[5] P. Belland and J.C. Lecullier: Appl. Opt. Vol. 19 (1980), p. (1946).

Google Scholar

[6] K.F. Renk and L. Genzel: Appl. Opt. Vol. 1 (1962), p.643.

Google Scholar

[7] R. Ulrich, T.J. Bridges and M.A. Pollack: Appl. Opt. Vol. 9 (1970), p.2511.

Google Scholar

[8] G.R. Davis, I. Furniss, W.A. Towlson, P. A. R. Ade, R. J. Emery, W. M. Glencross, D. A. Naylor, T. J. Patrick, R. C. Sidey and B. M. Swinyard: Appl. Opt. Vol. 34 (1995), p.92.

DOI: 10.1364/ao.34.000092

Google Scholar

[9] H. Blancher, G. Bachet, R. Coulon and D. Aubert: Int. J. Infrared Millimet. Waves. Vol. 6 (1985), p.53.

Google Scholar

[10] L.B. Whitbourn and R.C. Compton: Appl. Opt. Vol. 24 (1985), p.217.

Google Scholar

[11] R. Sauleau, Ph. Coquet, J.P. Daniel, T. Matsui and N. Hirose: IEEE Microwave Guided Wave Lett. Vol. 9 (1999), p.189.

DOI: 10.1109/75.766760

Google Scholar