Trends in Bragg Grating Technology for Optical Fiber Sensor Applications

Article Preview

Abstract:

Fiber Bragg gratings have found widespread and successful applications in optical sensor systems, e. g. for temperature, strain or refractive index measurements. Such sensor elements are fiber integrated, are applicable under harsh environmental conditions, and can be easily multiplexed. In order to further extend the field of applications, there is a great interest in specifically adapted Bragg gratings, in Bragg grating structures with increased stability, or in the use of special fiber types for grating inscription. The paper discusses such specific concepts for grating inscription, covers novel aspects of fiber gratings in small diameter fibers or in fiber tapers, of gratings in pure silica fibers without UV sensitivity, of grating inscription in different microstructured fibers or photonic crystal fibers, and investigates the concept of femtosecond inscription and the extension of the Bragg reflection wavelengths down to the visible range.

You might also be interested in these eBooks

Info:

[1] O.H. Hill, G. Meltz: Fiber Bragg Grating Technology Fundamentals and Overview. Journal of Lightwave Technology 15(8) (1997), pp.1263-1276.

DOI: 10.1109/50.618320

Google Scholar

[2] Andreas Othonos, Kyriacos Kalli: Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Bd. 1. Artech House (1999).

Google Scholar

[3] H. Bartelt, K. Schuster, S. Unger, C. Chojetzki, M. Rothhardt, I. Latka: Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures. Appl. Optics 46 (17) (2007), pp.3417-3424.

DOI: 10.1364/ao.46.003417

Google Scholar

[4] C.G. Askins, T. -E. Tsai, G.M. Williams, M.A. Putnam, M. Bashkansky and E.J. Friebele: Fiber Bragg reflectors prepared by a single excimer pulse. Opt. Lett. 17(11) (1992), pp.833-835.

DOI: 10.1364/ol.17.000833

Google Scholar

[5] J. -L. Archambault, L. Reekie, and P. St.J. Russell: 100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses. Electron. Lett. 29(5) (1993), pp.453-455.

DOI: 10.1049/el:19930303

Google Scholar

[6] L. Dong, J.L. Archambault, L. Reekie, P. St.J. Russell, and D.N. Payne: Single pulse Bragg gratings written during fibre drawing. Electron. Lett. 29(17) (1993), pp.1577-1578.

DOI: 10.1049/el:19931051

Google Scholar

[7] M. Rothhardt, C. Chojetzki, H.R. Mueller: High mechanical strength single-pulse draw tower gratings. Proc. SPIE. Vol. 5579, Part A (2004), pp.127-135.

DOI: 10.1117/12.567801

Google Scholar

[8] E.J. Voet, G. Luyckx, I. De Baere, J. Degrieck, J. Vlekken and E. Jacobs, H. Bartelt: High Strain monitoring during Fatigue Loading of Thermoplastic Composites using imbedded draw Tower Fibre Bragg Grating Sensors. Paper Nr. C-4: L16, Proceedings CIMTEC (2008).

DOI: 10.4028/www.scientific.net/ast.56.441

Google Scholar

[9] L.B. Fu et al.: Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres. Elect. Lett. 41 (2005), pp.638-640.

DOI: 10.1049/el:20051083

Google Scholar

[10] T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, H. Thienpont: Fiber Bragg Gratings in Germanium-doped Highly-Birefringent Microstructured Optical Fibers, IEEE Photonics Technology Letters 20 (8), 554-556 (2008).

DOI: 10.1109/lpt.2008.918896

Google Scholar

[11] M. Becker, J. Bergmann, S. Brueckner, M. Franke, E. Lindner, M. Rothhardt and H. Bartelt, Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry. Optics Express 16(23) (2008), 19169.

DOI: 10.1364/oe.16.019169

Google Scholar

[12] Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt: Fiber Bragg Gratings in Small-Core Ge-Doped Photonic Crystal Fibers. Journal of Electronic Science and Technology of China 6(4) (2008), 1.

DOI: 10.1109/apos.2008.5226304

Google Scholar