Impact of Different Turbulence Models on Air Pollutant Flow and Distribution

Article Preview

Abstract:

The aim of this study is to provide a simulation of air pollutant in a street canyon and investigates the impact of different turbulence models on the flow structure and air pollutant dispersion. Three studied k-ε turbulence models are evaluated to determine the most optimum turbulence model and the most suitable parameters of inlet boundary velocity and turbulent kinetic energy for simulating the pollutant dispersion in the present street canyon. The calculated data of the numerical model are then validated by comparing the extensive experimental database obtained from Kastner-Klein and Plate. Compared with the measured results, it can be concluded that modified RNG model with the inlet velocity profile and turbulent kinetic energy and turbulent dissipation rate provides the best calculated results, while standard and RNG k-ε turbulence models under-predict the pollutant concentrations.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 439-440)

Pages:

1373-1378

Citation:

Online since:

June 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Oke, T.R. : Energy and Building Vol. 11(1988), pp.103-131.

Google Scholar

[2] Hunter, L. J., G. T. Johnson, and I. D. Watson : Atmospheric Environment Vol. 26 (1992), pp.425-432.

Google Scholar

[3] Sini, J.F., Anquetin, S., Patrice, and G., Mestayer : Atmospheric Environment Vol. 30 (1996), pp.2659-2677.

DOI: 10.1016/1352-2310(95)00321-5

Google Scholar

[4] Meroney, R.N., and Pavageau, M. : Journal of Wind Engineering and Industrial Aerodynamics Vol. 62 (1996), pp.37-56.

Google Scholar

[5] Kastner-Klein, P., and Plate, E.J. : Atmospheric Environment Vol. 33(1999), pp.3937-3979.

Google Scholar

[6] Leitl, B.M., and Meroney, R.N. : Journal of Wind Engineering and Industrial Aerodynamics Vol. 67&68 (1997), pp.293-304.

DOI: 10.1016/s0167-6105(97)00080-9

Google Scholar

[7] Baik, J.J., and Kim, J.J. : Journal of Applied Meteorology Vol. 38 (1999), pp.1576-1589.

Google Scholar

[8] Huang, H., Akutsu, Y., Arai, M. and Tamura, M. : Atmospheric Environment Vol. 34 (2000), pp.689-698.

Google Scholar

[9] Chan, A.T., Ellen S.P. So and Subash C. Samad : Atmospheric Environment Vol. 35 (2001), pp.5681-5691.

Google Scholar

[10] Xie, X., Huang, Z., and Wang, J.S. : Atmospheric Environment Vol. 36 (2005), pp.3601-3613.

Google Scholar

[11] Chan, A.T., AU, W.T.W. and So, E.S.P. : Atmospheric Environment Vol. 37 (2003), pp.2761-2772.

Google Scholar

[12] Rotach, M. W.: Atmospheric Environment Vol. 29 (1995), pp.1473-1486.

Google Scholar

[13] G. T. Johnson and L. J. Hunter : Atmospheric Environment Vol. 33(1999), pp.3991-3999.

Google Scholar

[14] Schatzmann, M., Rafailidis, and S., Pavageau, M.: Journal of Wind Engineering and Industrial Aerodynamics Vol. 67&68 (1997), pp.885-893.

DOI: 10.1016/s0167-6105(97)00126-8

Google Scholar

[15] Chan, T.L. and Dong, G.: Atmospheric Environment Vol. 36 (2002), pp.861-872.

Google Scholar

[16] Kim, J. -J., and Baik,J. -J.: Journal of Wind Engineering and Industrial Aerodynamics Vol. 91 (2003), pp.309-329.

Google Scholar

[17] Xie, X., Huang, Z., and Wang, J.S.: Building and Environment Vol. 41(2006), pp.1352-1363.

Google Scholar

[18] P. Wang and H.L. Mu: Applied Mechanics and Materials Vols. 20-23 (2010), pp.1115-1120.

Google Scholar

[19] V. Yakhot and S.A. Orszag: Journal of Scientific Computing Vol. 1(1986), pp.1-51.

Google Scholar