Improved Inter-Cluster Separation Algorithm

Article Preview

Abstract:

The inter-cluster separation (ICS) algorithm adds the separation item into the objective function to minimize the fuzzy Euclidean distance and maximize the inter-cluster separation. However, ICS is sensitive to noisy data, so an improved inter-cluster separation (IICS) algorithm is proposed to deal with this problem. It is claimed that IICS is an incorporation of ICS and improved possibilistic c-means (IPCM) clustering. IICS can produce both possibilities and memberships simultaneously, and it overcomes the noise sensitivity problem of ICS and the coincident clusters problem of possibilistic c-means (PCM) clustering. Further, IICS does not depend on the parameters that exist in IPCM. The experimental results show that IICS compares favorably with ICS.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 439-440)

Pages:

361-366

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Bezdek. Fuzzy mathematics in pattern classification. Ph.D. dissertation, Dept. Appl. Math., Cornell Univ., Ithaca, New York (1973).

Google Scholar

[2] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981).

Google Scholar

[3] D. Özdemir, L. Akarun. Fuzzy algorithms for combined quantization and dithering. IEEE Trans. Image Process., vol. 10, no. 6, (2001), pp.923-931.

DOI: 10.1109/83.923288

Google Scholar

[4] R. Krishnapuram and J. Keller. A possibilistic approach to clustering. IEEE Trans. Fuzzy Systems, vol. 1, no. 2, (1993), 98-110.

DOI: 10.1109/91.227387

Google Scholar

[5] R. Krishnapuram and J. Keller. The possibilistic c-means algorithm: insights and recommendations, IEEE Trans. Fuzzy Systems, vol. 4, no. 3, (1996), pp.385-393.

DOI: 10.1109/91.531779

Google Scholar

[6] M. Barni, V. Cappellini and A. Mecocci. Comments on a possibilistic approach to clustering. IEEE Trans. Fuzzy Systems, vol. 4, No. 3, (1996), pp.393-396.

DOI: 10.1109/91.531780

Google Scholar

[7] J. - S. Zhang, Y. - W. Leung. Improved possibilistic c-means clustering algorithms. IEEE Trans. Fuzzy Systems, vol. 12, no. 2, (2004), 209-217.

DOI: 10.1109/tfuzz.2004.825079

Google Scholar

[8] M. S. Yang, K. L. Wu. Unsupervised possibilistic clustering. Pattern Recognition, vol. 39, no. 1, (2006), 5-21.

Google Scholar

[9] N. R. Pal, K. Pal, and J. C. Bezdek. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Systems, vol. 13, No. 4, (2005), pp.517-530.

DOI: 10.1109/tfuzz.2004.840099

Google Scholar

[10] N. R. Pal, K. Pal, and J. C. Bezdek. A new hybrid c-means clustering model. Proceedings of the IEEE International Conference On Fuzzy Systems, vol. 1, (2004), pp.179-184.

DOI: 10.1109/fuzzy.2004.1375713

Google Scholar

[11] J. C. Bezdek, J. M. Keller, R. Krishnapuram, L. I. Kuncheva and N. R. Pal. Will the real Iris data stand up?, IEEE Trans. Fuzzy Syst., vol. 7, no. 3, (1999), pp.368-369.

DOI: 10.1109/91.771092

Google Scholar

[12] H. Timm, C. Borgelt, C. Döring, R. Kruse. An extension to possibilistic fuzzy cluster analysis, Fuzzy Sets and Systems, vol. 147, no. 1, (2004), pp.3-16.

DOI: 10.1016/j.fss.2003.11.009

Google Scholar