Charge Transport Mechanism and the Effects of Device Temperature on Electrical Parameters of Au/ZnPc/N-Si Structures

Article Preview

Abstract:

Gold/Zinc Phthalocyanine/n-Si metal semiconductor contact with organic interfacial layer have been developed and characterized by Current–Voltage-Temperature (I-V-T) measurements, to study its junction and charge transport properties. The junction parameters, of diode ideality factor (n), barrier height (b) and series resistance (R¬S), of the device are found to shift with device temperature. The barrier height and the diode ideality factor are found to increase and the series resistance is found to decrease with increasing device temperature. The activation energy of the charge carriers is found to be 44 meV and the peak of interface state energy distribution curves is found to shift in terms of Ess-Ev value from 0.582 eV to 0.776 eV with increasing device temperature. The data analysis implies that the Fermi level of the organic interfacial layer shifts as function of device temperature by 100 meV in the device temperature range of 283K to 343K. In terms of dominant conduction mechanism, the I-V-T data analysis confirms the fit of data to the relationship log (IV4)  V1/2 for higher device temperatures and the Poole-Frenkel type is found to be the dominant conduction mechanism for the hybrid device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

372-380

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Li Wang, Wei Chen, Andrew Thye Shen Wee, Surface Science Reports, Vol. 63 (2008), p.465.

Google Scholar

[2] B.N. Holland, G. Cabailh, N. Peltekis, C. McGuinness, A.A. Cafolla, I.T. McGovern, Applied Surface Science, Vol. 255 (2008), p.775.

DOI: 10.1016/j.apsusc.2008.07.080

Google Scholar

[3] Sang Wan Cho, Yeonjin Yi, Myungkeun Noh, Mann-Ho Cho, Kyung-Hwa Yoo, Kwangho Jeong, Chung-Nam Whang , Synthetic Metals, Vol. 158 ( 2008), p.539.

Google Scholar

[4] F. Petraki, V. Papaefthimiou, S. Kennou , Organic Electronics, Vol. 8 ( 2007), p.522.

Google Scholar

[5] F.S. Tautz , Progress in Surface Science, Vol. 82( 2007) 479.

Google Scholar

[6] R.L. Van Merhaeghe, W.H. Laflere, F. Cardon, J. A ppl. Phys. Vol. 76 (1994), p.403.

Google Scholar

[7] Dietrich R. T. Zahn, Sunggook Park, Thorsten U. Kampen , Vacuum, Vol. 67 ( 2002), p.101.

Google Scholar

[8] S. Antohe, N. Tomozeiu, S. Gogonea, Phys. Status Solidi (a) Vol. 125 (1991), p.397.

Google Scholar

[9] Haibo Wang, Jun Wang, Haichao Huang, Xuanjun Yan, Donghang Yan, Organic Electronics, Vol. 7 (2006), p.369.

Google Scholar

[10] T. D. Anthopoulos, T. S. Shafai , Journal of Physics and Chemistry of Solids, Vol. 64 ( 2003), p.1217.

Google Scholar

[11] A. Ray, S.K. Gupta, J.V. Yakhmi , Radiation Measurements, In Press, Accepted Manuscript, Available online 26 October (2008).

Google Scholar

[12] Dario Natali, Marco Sampietro, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 512 (2003), p.419.

DOI: 10.1016/s0168-9002(03)01921-1

Google Scholar

[13] Kihyun Kim, Tae Ho Kwak, Mi Yeon Cho, Jin Woo Lee, Jinsoo Joo , Synthetic Metals, Vol. 158 (2008), p.553.

Google Scholar

[14] Liwei Shang, Ming Liu, Deyu Tu, Lijuan Zhen, Ge Liu, Rui Jia, Liqiang Li, Wenping Hu , Thin Solid Films, Vol. 516 (2008), p.5093.

DOI: 10.1109/icsict.2008.4734713

Google Scholar

[15] Rongbin Ye, Mamoru Baba, Kazunori Suzuki, Kunio Mori , Thin Solid Films, In Press, Accepted Manuscript, Available online 20 November (2008).

Google Scholar

[16] X. Liu, Y. Bai, L. Chen, F.X. Wei, X.B. Zhang, X.Y. Jiang, Zh.L. Zhang, Microelectronics Journal, Vol. 38 ( 2007), p.919.

Google Scholar

[17] Stephen Maldonado, Edgardo García-Berríos, Marc D. Woodka, Bruce S. Brunschwig, Nathan S. Lewis, Sensors and Actuators B: Chemical, Vol. 134 ( 2008), p.521.

DOI: 10.1016/j.snb.2008.05.047

Google Scholar

[18] S. Nespurek, O. Zmeskal, J. Sworakowski, Thin Solid Films, Vol. 516 (2008), p.8949.

Google Scholar

[19] H.S. Soliman, A.A.M. Farag, N.M. Khosifan, M.M. El-Nahass, Thin Solid Films, Vol. 516 (2008), p.8678.

DOI: 10.1016/j.tsf.2008.04.102

Google Scholar

[20] M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, N.A. El-Ghamaz, Solid-State Electronics, Vol. 49 (2005), p.1314.

DOI: 10.1016/j.sse.2005.06.001

Google Scholar

[21] M.M. El-Nahass, A.M. Farid, A. A.M. Farag, H. A.M. Ali, Vacuum, Vol. 81 ( 2006), p.8.

Google Scholar

[22] S. Senthilarasu, R. Sathyamoorthy, S. Lalitha, A. subbarayan, Solar Energy Materials and Solar Cells, Vol. 90 (2006), p.783.

DOI: 10.1016/j.solmat.2005.04.015

Google Scholar

[23] J. Ivanco, T. Haber, R. Resel, F.P. Netzer, M.G. Ramsey, Thin Solid Films, Vol. 514 ( 2006), p.156.

DOI: 10.1016/j.tsf.2006.02.018

Google Scholar

[24] G. Jorosz, J. Non-Cryst. Solids, Vol. 352 (2006), p.4264.

Google Scholar

[25] Sze, S. M., 1936- Semiconductor devices, physics and technology, JOHN WILEY & SONS, Singapore, 1985, p.91, 296, 95.

Google Scholar

[26] Mehmet E. nver Aydin, Fahrettin Yakuphanoglu, Jae-Hoon Eom, Do-Hoon Hwang, Physica B, Vol. 387 (2007), p.239.

Google Scholar

[27] A. M. Cowley, S. M. Sze, Appl. Phys. Vol. 36 (1965), p.3212.

Google Scholar

[28] A. E. Rakhshani, Y. Makdisi, X. Methew, J. of Materials Sc.: Materials in Elect. Vol. 8 (1997), p.207.

Google Scholar