Materials Design and Characterization of (Bi1/2Na1/2)TiO3-Bi(B’,B”)O3 Ceramics

Article Preview

Abstract:

0.995(Bi1/2Na1/2)TiO3-0.005Bi(B’,B”)O3 solid-solution ceramics (B’,B” denote Zn, Mg, Ni, Ti, Nb) were fabricated and their ferroelectric properties were investigated. Based on the structural characteristics of Bi(B’,B”)O3 analyzed by first-principles calculations, a materials design for obtaining a large piezoelectric strain is proposed: an index Z= Ps∙(ε33*∙s33)1/2, where Ps is spontaneous polarization, ε33* is relative permittivity and s33 is elastic compliance. A positive correlation was observed between Z and effective piezoelectric constant d33* observed for strain measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-62

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, and N.N. Krainik: Sov. Phys. Solid State vol. 2 (1961), p.2651.

Google Scholar

[2] H. Nagata, N. Koizumi, N. Kuroda, I. Igarashi, and T. Takenaka: Ferroelectrics 229 (1999), p.273.

Google Scholar

[3] Y. Chiang, G.W. Farrey, and A. N. Soukhojak: Appl. Phys. Lett. 73 (1998), p.3683.

Google Scholar

[4] S. Kuharuanhrong, and W. Schulze: J. Amer. Ceram. Soc. 78 (1995), p.2274.

Google Scholar

[5] H. Ishii, H. Nagata, and T. Takenaka: Jpn. J. Appl. Phys. 40 (2001), p.5660.

Google Scholar

[6] G. O. Jones, and P. A. Thomas: Acta. Cryst. B58 (2002), p.168.

Google Scholar

[7] S. V. Halilov, M. Fornari and D. J. Singh: Phys. Rev. B 69 (2002), p.174107.

Google Scholar

[8] N. A. Hill, K. M. Rabe: Phys. Rev. B 59 (1999), p.8759.

Google Scholar

[9] R. Seshadri and N. A. Hill: Chem. Mater. 13 (2001), p.2892.

Google Scholar

[10] A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Tkano, F. Izumi and E. T. Muromachi: Chem. Mater. 18 (2006), p.798.

DOI: 10.1021/cm052334z

Google Scholar

[11] J. Zylberberg, A. A. Belik, E. T. Muromachi and Z. Ye: Chem. Mater. 19 (2007), p.6385.

Google Scholar

[12] A. A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Ngai, Y. Matsui and E. T. Muromachi: Chem. Mater. 18 (2006), p.133.

Google Scholar

[13] F. Sugawara and S. Iida: J. Phys. Soc. Japan 20 (1965), p.1529.

Google Scholar

[14] S. Niitaka, M. Azuma, M. Takano, E. Nishibori, M. Takata and M. Sakata: Solid State Ionics 172 (2004), p.557.

DOI: 10.1016/j.ssi.2004.01.060

Google Scholar

[15] D. D. Khalyavin, A. N. Salak, N. P. Vyshatko, A. B. Lopes, N. M. Olekhnovich, A. V. Pushkarev, I. I. Maroz and Y. V. Radyush: Chem. Mater. 18 (2006), p.5104.

DOI: 10.1021/cm061129w

Google Scholar

[16] Y. Inaguma and T. Katsumata: Ferroelectrics 286 (2003), p.111.

Google Scholar

[17] M. R. Suchomel, and P. Davies: Appl. Phys. Lett. 86 (2005), p.262905.

Google Scholar

[18] I. Grinberg, M. R. Suchomel, W. Dmowski, S. E. Mason, H. Wu, P. K. Davies and A. M. Rappe: Phys. Rev. Lett. 98 (2007), p.107601.

Google Scholar

[19] X. D. Zhang, D. Kwon and B. G. Kim: Appl. Phys. Lett. 92 (2008), p.082906.

Google Scholar

[20] D. Stein, M. Suchomel, and P. Davies: Appl. Phys. Lett. 89 (2006), p.132907.

Google Scholar

[21] S. M. Choi, C. J. Stringer, T. R. Shrout and C. A. Randall: J. Appl. Phys. 98 (2005), p.034108.

Google Scholar

[22] C. A. Randall, R. Eitel, B. Jones, T. R. Shrout, D. I. Woodward and I . M . Reaney: J. Appl. Phys. 95 (2004), p.3633.

Google Scholar

[23] I. Grinberg, M. R. Suchomel, P. K. Davis and A. M. Rappe: J. Appl. Phys. 98 (2005), p.094111.

Google Scholar

[24] I. Grinberg and A. M. Rappe: Phys. Rev. Lett. 98 (2007), p.037603.

Google Scholar