Surface Modification of AZ91D Magnesium Alloy Using Millisecond, Nanosecond and Femtosecond Lasers

Article Preview

Abstract:

Poor surface properties of magnesium alloys limit their extensive use in many applications. Laser surface engineering can be used to enhance surface-related properties of Mg alloys, and the purpose of this paper is to study the effect of laser pulse duration on surface of AZ91D Mg alloy. After millisecond-pulse laser treatment, ripples and cellular/dendrite as well as nanoscale -Mg17Al12 precipitates in the -Mg matrix were found in the surface microstructure, moreover, the melt depth was more than 150 micron. After nanosecond-pulse laser treatment, craters of 10 to 50 micron in diameter were observed on the surface due to plasma expansion and melted matter ejection during local boiling process, and the melt depth was nearly 15 micron. However, femtosecond-pulse laser treatment produced various micro- and nano-structures within a very thin layer on the surface.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 447-448)

Pages:

695-699

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.J. Huang, B.H. Hu, I. Pinwill, W. Zhou and D.M.R. Taplin, Mater. Manuf. Proc., Vol. 15 (2000), p.97.

Google Scholar

[2] Y.C. Guan and W. Zhou: Mater. Lett. Vol. 62 (2008), p.4494.

Google Scholar

[3] R. Ambat, N.N. Aung and W. Zhou: Corr. Sci. Vol. 42 (2000), p.1433.

Google Scholar

[4] C.H. Olk and D.B. Haddad: Appl. Phys. A Vol. 88 (2007), p.249.

Google Scholar

[5] G. Abbas, Z. Liu and P. Skeldon: Appl. Surf. Sci., Vol. 247 (2005), p.347.

Google Scholar

[6] A.K. Mondal, S. Kumar, C. Blawert and N.B. Dahotre: Surf. Coat. Technol., Vol. 202 (2008), p.3187.

Google Scholar

[7] Y.C. Guan, W. Zhou and H.Y. Zheng: J. Appl. Electrochem. Vol. 39 (2009), p.1457.

Google Scholar

[8] Y.C. Guan, W. Zhou, Z.L. Li and H.Y. Zheng: Appl. Surf. Sci. Vol. 255 (2009), p.8235.

Google Scholar

[9] L.F. Cai, C.K. Mark and W. Zhou: Sur. Rev. Lett., Vol. 16 (2009), p.215.

Google Scholar

[10] T.R. Anthony and H.E. Cline: J. Appl. Phys. Vol. 48 (1977), p.3888.

Google Scholar

[11] W. Zhou, T.Z. Long and C.K. Mark: Mater. Sci. Tech. Vol. 23 (2007), p.1294.

Google Scholar

[12] Y.C. Guan, W. Zhou and H.Y. Zheng: Surf. Rev. Lett. Vol. 16 (2009), p.801.

Google Scholar

[13] J.H. Yoo, S.H. Jeong, R. Greif and R.E. Russo: J. Appl. Phys., Vol. 88 (2000), p.1638.

Google Scholar

[14] X. Chen, R.Q. Xu, J.P. Chen, Z. H Shen, L. Jian and X.W. Ni: Appl. Optic., Vol. 43 (2004), p.3251.

Google Scholar

[15] H. Li, S. Costil, V. Barnier, R. Oltra, O. Heintz and C. Coddet: Surf. Coat. Technol., Vol. 201 (2006), p.1383.

Google Scholar

[16] K. Dou, R. L. Parkhill, J. Wu and E.T. Knobbe: J Sel Top Quant Electron. Vol. 7 (2001), p.567.

Google Scholar

[17] D.C. Deshpande, A.P. Malshe, E.A. Stach, V. Radmilovic, D. Alexander, D. Doerr and D. Hirt: J. Appl. Phys., Vol. 97 (2005), 074316.

DOI: 10.1063/1.1882763

Google Scholar

[18] Y.Z. Deng, H.Y. Zheng, V.M. Murukeshan, and W. Zhou: J. Laser Micro/Nanoeng. Vol. 1 (2006), p.136.

Google Scholar

[19] H.Y. Zheng, X.C. Wang and W. Zhou: Int. J. Sur. Sci. Eng., Vol. 3 (2009), p.114.

Google Scholar

[20] W. Zhou, T.T. Tan, L.E.N. Lim, H.Y. Zheng, S. Zhu, and L.M. Wang: Opt. Express, Vol. 14 (2006), p.9217.

Google Scholar

[21] A.Y. Vorobyev and C.L. Guo: Opt. Express Vol. 14 (2006), p.2164.

Google Scholar