Study Effect of Stress in the Electrical Contact Resistance of Bipolar Plate and Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cell: A Review

Article Preview

Abstract:

Stress applying in the stack of Proton Exchange Membrane Fuel Cell (PEMFC) effects the performance of PEMFC. High pressure in the Membrane Electrode Assembly (MEA) can reduce electrical contact resistance between bipolar plate and MEA. Nevertheless, too high pressure in the PEMFC can destroy MEA. Performance of PEMFC can be optimized by make proportional stress in the assembly of PEMFC. Finite element analysis (FEA) is one of method that can be used for analysis of stress in the PEMFC stack. However, setting of parameter in the analysis using FEA still became one of problem if realistic result must be desired. This paper reports setting of parameters in the stress analysis of PEMFC assembly using FEA method and study relationship of stress analysis with electrical contact resistance.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 447-448)

Pages:

775-779

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hwang, J.J., et al., Development of a small vehicular PEM fuel cell system. International Journal of Hydrogen Energy, (2008). 33(14): pp.3801-3807.

DOI: 10.1016/j.ijhydene.2008.04.043

Google Scholar

[2] Wang, X., Y. Song, and B. Zhang, Experimental study on clamping pressure distribution in PEM fuel cells. Journal of Power Sources, (2008). 179(1): pp.305-309.

DOI: 10.1016/j.jpowsour.2007.12.055

Google Scholar

[3] Zhou, Y., et al., Assembly pressure and membrane swelling in PEM fuel cells. Journal of Power Sources, (2009). 192(2): pp.544-551. Bipolarplate GDL Catalyst Layer Membrane Contact Resistance between GDL and bipolarplate.

DOI: 10.1016/j.jpowsour.2009.01.085

Google Scholar

[4] Ge, J., A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance. Journal of Power Sources, (2006). 159(2): pp.922-927.

DOI: 10.1016/j.jpowsour.2005.11.069

Google Scholar

[5] R. Montanini , G.S., G. Giacoppo, Experimental Evaluation of The Clamping Pressure Distribution in a PEM Fuel Cell Using Matrix-Based Piezoresistive Thin Film Sensors. (2009), XIX IMEKO World Congress Fundamental and Applied Metrology.

Google Scholar

[6] Al-Baghdadi, M.A.R.S. and H.A.K.S. Al-Janabi, Effect of operating parameters on the hygro-thermal stresses in proton exchange membranes of fuel cells. International Journal of Hydrogen Energy, (2007). 32(17): pp.4510-4522.

DOI: 10.1016/j.ijhydene.2007.05.007

Google Scholar

[7] Liu, D. a., et al., Robust design of assembly parameters on membrane electrode assembly pressure distribution. Journal of Power Sources, (2007). 172(2): pp.760-767.

DOI: 10.1016/j.jpowsour.2007.05.066

Google Scholar

[8] Lee, S. -J., C. -D. Hsu, and C. -H. Huang, Analyses of the fuel cell stack assembly pressure. Journal of Power Sources, (2005). 145(2): pp.353-361.

DOI: 10.1016/j.jpowsour.2005.02.057

Google Scholar

[9] Lin, P., P. Zhou, and C.W. Wu, A high efficient assembly technique for large PEMFC stacks: Part I. Theory. Journal of Power Sources, (2009). 194(1): pp.381-390.

DOI: 10.1016/j.jpowsour.2009.04.068

Google Scholar

[10] Bograchev, D., et al., Stress and plastic deformation of MEA in running fuel cell. International Journal of Hydrogen Energy, (2008). 33(20): pp.5703-5717.

DOI: 10.1016/j.ijhydene.2008.06.066

Google Scholar

[11] Kusoglu, A., et al., Mechanical response of fuel cell membranes subjected to a hygrothermal cycle. Journal of Power Sources, (2006). 161(2): pp.987-996.

DOI: 10.1016/j.jpowsour.2006.05.020

Google Scholar

[12] Liu, D. a., L. Peng, and X. Lai, Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell. International Journal of Hydrogen Energy, (2009). 34(2): pp.990-997.

DOI: 10.1016/j.ijhydene.2008.10.081

Google Scholar

[13] Zhou, P., C.W. Wu, and G.J. Ma, Contact resistance prediction and structure optimization of bipolar plates. Journal of Power Sources, (2006). 159(2): pp.1115-1122.

DOI: 10.1016/j.jpowsour.2005.12.080

Google Scholar

[14] Rong, F., et al., Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling: Part I. Mechanical model. Journal of Power Sources, (2008). 175(2): p.699711.

DOI: 10.1016/j.jpowsour.2007.10.007

Google Scholar

[15] Solasi, R., et al., On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. Journal of Power Sources, (2007). 167(2): pp.366-377.

DOI: 10.1016/j.jpowsour.2007.02.025

Google Scholar

[16] Chu, H. -S., C. Yeh, and F. Chen, Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell. Journal of Power Sources, (2003). 123(1): pp.1-9.

DOI: 10.1016/s0378-7753(02)00605-5

Google Scholar

[17] Berning, T. and N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study. Journal of Power Sources, (2003). 124(2): pp.440-452.

DOI: 10.1016/s0378-7753(03)00816-4

Google Scholar

[18] Inoue, G., Y. Matsukuma, and M. Minemoto, Evaluation of the thickness of membrane and gas diffusion layer with simplified two-dimensional reaction and flow analysis of polymer electrolyte fuel cell. Journal of Power Sources, (2006).

DOI: 10.1016/j.jpowsour.2005.03.218

Google Scholar

[19] Jang, J. -H., W. -M. Yan, and C. -C. Shih, /umerical study of reactant gas transport phenomena and cell performance of proton exchange membrane fuel cells. Journal of Power Sources, (2006). 156(2): pp.244-252.

DOI: 10.1016/j.jpowsour.2005.06.029

Google Scholar

[20] Zhou, Y., et al., A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells. Journal of Power Sources, (2007). 163(2): p.777783.

DOI: 10.1016/j.jpowsour.2006.09.019

Google Scholar

[21] Wu, Z., et al., An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells. Journal of Power Sources, (2008). 182(1): pp.265-269.

DOI: 10.1016/j.jpowsour.2008.03.044

Google Scholar

[22] Mishra, V., Yang. F., Pitchumani, R. ASME J. Fuel cell Sci. Technol. 1 (2004) 2-9.

Google Scholar