[1]
Hwang, J.J., et al., Development of a small vehicular PEM fuel cell system. International Journal of Hydrogen Energy, (2008). 33(14): pp.3801-3807.
DOI: 10.1016/j.ijhydene.2008.04.043
Google Scholar
[2]
Wang, X., Y. Song, and B. Zhang, Experimental study on clamping pressure distribution in PEM fuel cells. Journal of Power Sources, (2008). 179(1): pp.305-309.
DOI: 10.1016/j.jpowsour.2007.12.055
Google Scholar
[3]
Zhou, Y., et al., Assembly pressure and membrane swelling in PEM fuel cells. Journal of Power Sources, (2009). 192(2): pp.544-551. Bipolarplate GDL Catalyst Layer Membrane Contact Resistance between GDL and bipolarplate.
DOI: 10.1016/j.jpowsour.2009.01.085
Google Scholar
[4]
Ge, J., A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance. Journal of Power Sources, (2006). 159(2): pp.922-927.
DOI: 10.1016/j.jpowsour.2005.11.069
Google Scholar
[5]
R. Montanini , G.S., G. Giacoppo, Experimental Evaluation of The Clamping Pressure Distribution in a PEM Fuel Cell Using Matrix-Based Piezoresistive Thin Film Sensors. (2009), XIX IMEKO World Congress Fundamental and Applied Metrology.
Google Scholar
[6]
Al-Baghdadi, M.A.R.S. and H.A.K.S. Al-Janabi, Effect of operating parameters on the hygro-thermal stresses in proton exchange membranes of fuel cells. International Journal of Hydrogen Energy, (2007). 32(17): pp.4510-4522.
DOI: 10.1016/j.ijhydene.2007.05.007
Google Scholar
[7]
Liu, D. a., et al., Robust design of assembly parameters on membrane electrode assembly pressure distribution. Journal of Power Sources, (2007). 172(2): pp.760-767.
DOI: 10.1016/j.jpowsour.2007.05.066
Google Scholar
[8]
Lee, S. -J., C. -D. Hsu, and C. -H. Huang, Analyses of the fuel cell stack assembly pressure. Journal of Power Sources, (2005). 145(2): pp.353-361.
DOI: 10.1016/j.jpowsour.2005.02.057
Google Scholar
[9]
Lin, P., P. Zhou, and C.W. Wu, A high efficient assembly technique for large PEMFC stacks: Part I. Theory. Journal of Power Sources, (2009). 194(1): pp.381-390.
DOI: 10.1016/j.jpowsour.2009.04.068
Google Scholar
[10]
Bograchev, D., et al., Stress and plastic deformation of MEA in running fuel cell. International Journal of Hydrogen Energy, (2008). 33(20): pp.5703-5717.
DOI: 10.1016/j.ijhydene.2008.06.066
Google Scholar
[11]
Kusoglu, A., et al., Mechanical response of fuel cell membranes subjected to a hygrothermal cycle. Journal of Power Sources, (2006). 161(2): pp.987-996.
DOI: 10.1016/j.jpowsour.2006.05.020
Google Scholar
[12]
Liu, D. a., L. Peng, and X. Lai, Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell. International Journal of Hydrogen Energy, (2009). 34(2): pp.990-997.
DOI: 10.1016/j.ijhydene.2008.10.081
Google Scholar
[13]
Zhou, P., C.W. Wu, and G.J. Ma, Contact resistance prediction and structure optimization of bipolar plates. Journal of Power Sources, (2006). 159(2): pp.1115-1122.
DOI: 10.1016/j.jpowsour.2005.12.080
Google Scholar
[14]
Rong, F., et al., Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling: Part I. Mechanical model. Journal of Power Sources, (2008). 175(2): p.699711.
DOI: 10.1016/j.jpowsour.2007.10.007
Google Scholar
[15]
Solasi, R., et al., On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. Journal of Power Sources, (2007). 167(2): pp.366-377.
DOI: 10.1016/j.jpowsour.2007.02.025
Google Scholar
[16]
Chu, H. -S., C. Yeh, and F. Chen, Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell. Journal of Power Sources, (2003). 123(1): pp.1-9.
DOI: 10.1016/s0378-7753(02)00605-5
Google Scholar
[17]
Berning, T. and N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study. Journal of Power Sources, (2003). 124(2): pp.440-452.
DOI: 10.1016/s0378-7753(03)00816-4
Google Scholar
[18]
Inoue, G., Y. Matsukuma, and M. Minemoto, Evaluation of the thickness of membrane and gas diffusion layer with simplified two-dimensional reaction and flow analysis of polymer electrolyte fuel cell. Journal of Power Sources, (2006).
DOI: 10.1016/j.jpowsour.2005.03.218
Google Scholar
[19]
Jang, J. -H., W. -M. Yan, and C. -C. Shih, /umerical study of reactant gas transport phenomena and cell performance of proton exchange membrane fuel cells. Journal of Power Sources, (2006). 156(2): pp.244-252.
DOI: 10.1016/j.jpowsour.2005.06.029
Google Scholar
[20]
Zhou, Y., et al., A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells. Journal of Power Sources, (2007). 163(2): p.777783.
DOI: 10.1016/j.jpowsour.2006.09.019
Google Scholar
[21]
Wu, Z., et al., An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells. Journal of Power Sources, (2008). 182(1): pp.265-269.
DOI: 10.1016/j.jpowsour.2008.03.044
Google Scholar
[22]
Mishra, V., Yang. F., Pitchumani, R. ASME J. Fuel cell Sci. Technol. 1 (2004) 2-9.
Google Scholar