Generalized Linear Elastic Fracture Mechanics: An Application to a Crack Touching the Bimaterial Interface

Abstract:

Article Preview

In the contribution the limits of the validity of classical linear elastic fracture mechanics are extended to problems connected with failure of composite structures. The work is focused mainly on the case of a crack touching the interface between two different materials, two different constituents. The approach suggested in the paper facilitates the answer to the question what is the influence of particle (in particulate composite) or layer (in laminates) on crack propagation through bimaterial interface. Different composite (bimaterial) structures are considered: layered composites and composites reinforced by particles. The presented approach follows the basic idea of linear elastic fracture mechanics, i.e. the validity of small scale yielding conditions is assumed, and has a phenomenological character.

Info:

Periodical:

Key Engineering Materials (Volumes 452-453)

Edited by:

Akihide Saimoto and Prof. Ferri M.H.Aliabadi

Pages:

445-448

Citation:

L. Náhlík et al., "Generalized Linear Elastic Fracture Mechanics: An Application to a Crack Touching the Bimaterial Interface", Key Engineering Materials, Vols. 452-453, pp. 445-448, 2011

Online since:

November 2010

Export:

Price:

$41.00

[1] B.D. Bogy: Journal of Applied Mechanics (1971), pp.911-918.

[2] D.N. Fenner: International Journal of Fracture, Vol. 12, No. 5 (1976), pp.705-721.

[3] P. Hutař, L. Náhlík and Z. Knésl: Computational Materials Science 45 (2009), pp.653-657.

[4] P. Hutař, L. Náhlík and Z. Knésl: Key Engineering Materials Vols. 385-387 (2008), pp.317-320.

[5] J. Klusák and Z. Knésl: Computational Materials Science 39 (2007), pp.214-218.

[6] K.Y. Lin and J.W. Mar: International Journal of Fracture, Vol. 12, No. 4 (1976), pp.521-531.

[7] L. Náhlík, L. Šestáková and P. Hutař: Computational Materials Science 46 (2009), pp.614-620.

[8] L. Náhlík, L. Šestáková and P. Hutař: Materials Science Forum, Vols. 567-568 (2008), p.225228.

[9] K.H. Oh and K.S. Han: Composites Science and Technology 67 (2007), pp.1719-1726.

[10] C.L. Hsieh and W.H. Tuan: Materials Science and Engineering A 393 (2005), pp.133-139.

[11] B.N. Kim: Engineering Fracture Mechanics Vol. 59, No. 3 (1998), pp.289-303.

[12] W. Wang, K. Sadeghipour and G. Baran: Composites: Part A 39 (2008), pp.956-964.

[13] P. Hutař, Z. Majer, L. Náhlík, L. Shestakova and Z. Knésl: Mechanics of Composite Materials Vol. 45, No. 3 (2009), pp.281-286.

[14] H. Shen and C.J. Lissenden: Materials Science and Engineering A 338 (2002), pp.271-281.

[15] N. Chawla, R.S. Sidhu and V.V. Ganesh: Acta Materialia 54 (2006), pp.1541-1548.

[16] K. S. Ravichandran: Acta Metallurgica Materialia Vol. 42, No. 4 (1994), pp.1113-1123.

[17] R.A. Schultz: Journal of Geophysical Research, Planets 98(E6) (1993), pp.10883-10895.

[18] S.S. Smith, P. Magnusen and B.J. Pletka, in: Fracture Mechanics Methods for Ceramics, Rocks and Concrete, ASTM STP 745, edited by W. Freiman and E.R. Fuller, American Society for Testing and Materials (1981), pp.33-45.

[19] Z. Knésl, L. Náhlík and Z. Keršner: Structural Engineering, Mechanics and Computation, edited by A. Zingoni, Elsevier Ltd. (2001), pp.737-744.

DOI: https://doi.org/10.1016/b978-008043948-8/50080-1

[20] Database of material properties on http: /www. matweb. com.