Generalized Linear Elastic Fracture Mechanics: An Application to a Crack Touching the Bimaterial Interface

Article Preview

Abstract:

In the contribution the limits of the validity of classical linear elastic fracture mechanics are extended to problems connected with failure of composite structures. The work is focused mainly on the case of a crack touching the interface between two different materials, two different constituents. The approach suggested in the paper facilitates the answer to the question what is the influence of particle (in particulate composite) or layer (in laminates) on crack propagation through bimaterial interface. Different composite (bimaterial) structures are considered: layered composites and composites reinforced by particles. The presented approach follows the basic idea of linear elastic fracture mechanics, i.e. the validity of small scale yielding conditions is assumed, and has a phenomenological character.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 452-453)

Pages:

445-448

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.D. Bogy: Journal of Applied Mechanics (1971), pp.911-918.

Google Scholar

[2] D.N. Fenner: International Journal of Fracture, Vol. 12, No. 5 (1976), pp.705-721.

Google Scholar

[3] P. Hutař, L. Náhlík and Z. Knésl: Computational Materials Science 45 (2009), pp.653-657.

DOI: 10.1016/j.commatsci.2008.08.009

Google Scholar

[4] P. Hutař, L. Náhlík and Z. Knésl: Key Engineering Materials Vols. 385-387 (2008), pp.317-320.

DOI: 10.4028/www.scientific.net/kem.385-387.317

Google Scholar

[5] J. Klusák and Z. Knésl: Computational Materials Science 39 (2007), pp.214-218.

Google Scholar

[6] K.Y. Lin and J.W. Mar: International Journal of Fracture, Vol. 12, No. 4 (1976), pp.521-531.

Google Scholar

[7] L. Náhlík, L. Šestáková and P. Hutař: Computational Materials Science 46 (2009), pp.614-620.

DOI: 10.1016/j.commatsci.2009.04.005

Google Scholar

[8] L. Náhlík, L. Šestáková and P. Hutař: Materials Science Forum, Vols. 567-568 (2008), p.225228.

Google Scholar

[9] K.H. Oh and K.S. Han: Composites Science and Technology 67 (2007), pp.1719-1726.

Google Scholar

[10] C.L. Hsieh and W.H. Tuan: Materials Science and Engineering A 393 (2005), pp.133-139.

Google Scholar

[11] B.N. Kim: Engineering Fracture Mechanics Vol. 59, No. 3 (1998), pp.289-303.

Google Scholar

[12] W. Wang, K. Sadeghipour and G. Baran: Composites: Part A 39 (2008), pp.956-964.

Google Scholar

[13] P. Hutař, Z. Majer, L. Náhlík, L. Shestakova and Z. Knésl: Mechanics of Composite Materials Vol. 45, No. 3 (2009), pp.281-286.

Google Scholar

[14] H. Shen and C.J. Lissenden: Materials Science and Engineering A 338 (2002), pp.271-281.

Google Scholar

[15] N. Chawla, R.S. Sidhu and V.V. Ganesh: Acta Materialia 54 (2006), pp.1541-1548.

Google Scholar

[16] K. S. Ravichandran: Acta Metallurgica Materialia Vol. 42, No. 4 (1994), pp.1113-1123.

Google Scholar

[17] R.A. Schultz: Journal of Geophysical Research, Planets 98(E6) (1993), pp.10883-10895.

Google Scholar

[18] S.S. Smith, P. Magnusen and B.J. Pletka, in: Fracture Mechanics Methods for Ceramics, Rocks and Concrete, ASTM STP 745, edited by W. Freiman and E.R. Fuller, American Society for Testing and Materials (1981), pp.33-45.

DOI: 10.1520/stp28296s

Google Scholar

[19] Z. Knésl, L. Náhlík and Z. Keršner: Structural Engineering, Mechanics and Computation, edited by A. Zingoni, Elsevier Ltd. (2001), pp.737-744.

Google Scholar

[20] Database of material properties on http: /www. matweb. com.

Google Scholar