Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites Part II: Crack and Notch Fracture Mechanics Approaches

Article Preview

Abstract:

The paper focuses on the geometrical proportions of cube-shaped quasi-brittle specimens subjected to a wedge-splitting test (WST). The minimal/optimal initial crack/notch length for successful performance of WST on these specimens is studied numerically (ANSYS). This second part of the paper treats the problem asymptotically, i.e. from the point of view of a very fine grained silicate composite material with negligible characteristic length which describes the level of the material brittleness (i.e. brittle). The problem of competition of the crack initiation point between the notch tip and the groove corner in the load-imposing area of the specimen is solved using theories of both linear elastic fracture mechanics and fracture mechanics of generalized singular stress concentrators. The numerically obtained crack/notch length is compared to results of numerical simulations using cohesive crack model reported in the first part of the paper. The minimal notch length is recommended.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 452-453)

Pages:

81-84

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.N. Linsbauer, E.K. Tschegg: Zement und Beton 31 (1986), p.38.

Google Scholar

[2] E. Brühwiler, F.H. Wittmann: Engineering Fracture Mechanics, 35 (1990), p.117.

Google Scholar

[3] S. Seitl, P. Dymáček, J. Klusák, L. Řoutil, V. Veselý, in: Proc. of CCS 12, Civil-Comp Press, Stirlingshire, United Kingdom (2009).

Google Scholar

[4] S. Seitl, Z. Knésl, V. Veselý, L. Řoutil: Applied and Computational Mechanics, 3(2) (2009), p.375.

Google Scholar

[5] M. Elser, E.K. Tschegg, N. Finger, S.E. Stanzl-Tschegg,: Composite Science and Technology, 56 (1996), p.933.

Google Scholar

[6] B. Trunk, G. Schober, F.H. Wittmann: Cement and Concrete Research, 29 (1999), p.855.

Google Scholar

[7] J. Xiao, H. Schneider, C. Donnecke, G. Konig: Construction and Building Materials, 18 (2004), p.359.

Google Scholar

[8] I. Löfgren, H. Stang, J.F. Olesen: Journal of Advanced Concrete Technology, 3 (2005), p.423.

Google Scholar

[9] L. Østergaard: Early-Age Fracture Mechanics and Cracking of Concrete, PhD Thesis, Technical University of Denmark, ISBN 87-7877-133-1, (2003).

Google Scholar

[10] J. Skoček, H. Stang: Engineering Fracture Mechanics, 75 (2008), p.3173.

Google Scholar

[11] D. Lehký, D. Novák. in: Proceedings of 5 th PhD Symposium, Delft, Netherlands, (2004) p.535.

Google Scholar

[12] RILEM Committee FMC 50: Materials and Structures, 18 (1985), p.285.

Google Scholar

[13] V. Červenka et al.: ATENA Program Documentation, Theory and User manual, Cervenka Consulting, Prague (2005).

Google Scholar

[14] ANSYS Users manual version 10. 0, Swanson Analysis System, Inc., Houston (2005).

Google Scholar

[15] M.L. Williams: ASME Journal of Applied Mechanics, 24 (1957), p.109.

Google Scholar

[16] J. Klusák, Z. Knésl, L. Náhlík: Engineering Mechanics 14 (6) (2008).

Google Scholar