Prediction of Hypoeutectic Gray Iron Microstructure during Solidification and Solid Transformation Using Simple Fourier Model

Abstract:

Article Preview

Phases’ evolution during the solidification of a hypoeutectic 3.92% C-equivalence cast iron was modelled by considering the cooling history of the alloy from the melt, thus including both solidification and solid state transformations. Simple Fourier model was used to combine macroscopic heat flow and microscopic kinetics for phase evolution. Different cooling rates were obtained by casting cylinders and stepped plates. Measured number of primary austenitic nuclei, eutectic cells and volume fraction of phases during solidification (graphite, a-ferrite, pearlite and cementite), are correlated with the cooling rate. Growth rate constants for primary austenite, are found to be  = 8.7E-7, and n = 2.3. Growth rate constants for primary graphite (types A, B, and C), are found to be  =5.7E-7, and n = 2. The model matches with the experimental work where the error percent of modelling volume fractions of pearlite, graphite, ferrite and cementite ranges between 0.2 and 1.5%.

Info:

Periodical:

Edited by:

Adel Nofal and Mohamed Waly

Pages:

293-298

DOI:

10.4028/www.scientific.net/KEM.457.293

Citation:

M. A. Taha Hanafi et al., "Prediction of Hypoeutectic Gray Iron Microstructure during Solidification and Solid Transformation Using Simple Fourier Model", Key Engineering Materials, Vol. 457, pp. 293-298, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.