[1]
Givens D I, Deboever J L, Deaville E R: Thermogravimetric evaluation of perennial ryegrass (Lolium perenne) for the prediction of in vitro dry matter digestibility, Nutrition research reviews, Vol. 10 (1997) pp.83-114.
DOI: 10.1111/j.1744-7348.2008.00218.x
Google Scholar
[2]
Paradkar M M, Sivakesava S, Irudayaraj J: Rapid Determination of Swiss Cheese Composition by Fourier Transform Infrared/Attenuated Total Reflectance Spectroscopy, Journal of the science of food and agriculture, Vol. 82 (2002) pp.497-504.
DOI: 10.3168/jds.s0022-0302(06)72209-3
Google Scholar
[3]
Barton I I, Franklin E: Treating Peanut Hulls to Improve Digestibility for Ruminants, Spectroscopy Europe, Vol. 12 (2002) p.12.
Google Scholar
[4]
Liu Xian, Han Lu-Jia, Yang Zeng-Ling, Li Qiong-Fei: NIRS Method for Determination of Meat and Bone Meal Content in Ruminant Concentrates, Chinese Journal of Analytical Chemistry, Vol. 35 (2007) pp.1285-1289.
Google Scholar
[5]
Yan Yan-Lu, Zhao Long-Lian, Han Dong-Hai, Yang Shu-Ming: The Foundation and Application of Near Infrared Spectroscopy Analysis. Beijing: China Light Indus-try Press, (2005).
Google Scholar
[6]
Xu Guang-tong, Yuan Hong-fu: Development of modern near infrared spectroscopic techniques and its applications, Acta Petrolei Sinica, Vol. 15 (1999) pp.63-68.
Google Scholar
[7]
A. G. Mignani, L. Ciaccheri, N. Díaz-Herrera, A. A. Mencaglia, H. Ottevaere, H. Thienpont: Optical fiber spectroscopy for measuring quality indicators of lubricant oils, Meas. Sci. Technol., Vol. 20, pp.1-7, (2009).
DOI: 10.1088/0957-0233/20/3/034011
Google Scholar
[8]
A. R. Caneca, M. F. Pimentel, R. K. H. Galvao, C. E. da Matta; F. R. de Carvalho; I. M. Raimundo, Assessment of infrared spectroscopy and multivariate techniques for monitoring the service condition of diesel-engine lubricating oils, Talanta, Vol. 70 (2006).
DOI: 10.1016/j.talanta.2006.02.054
Google Scholar
[9]
J. Sjoblom, N. Aske, I. H. Auflem, Ø. Brandal, T. E. Havre, Ø. Sæther, Our current understanding of water-in-crude oil emulsions.: Recent characterization techniques and high pressure performance, Adv. Colloid Interface Sci., pp.100-102, pp.399-473, (2003).
DOI: 10.1016/s0001-8686(02)00066-0
Google Scholar
[10]
V., Kecman, Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models, MIT Press, MA: Cambridge, (2001).
DOI: 10.1016/s0925-2312(01)00685-3
Google Scholar
[11]
S. Kumar. Neural networks, Authorized ed., McGraw-Hill Education (Asia) Co. and Tsinghua University Press, 2006, pp.273-303.
Google Scholar
[12]
G. Taylor, R. Parr: Kernelized Value Function Approximation for Reinforcement Learning, unpublished.
Google Scholar
[13]
S. Kumar. Neural networks, Authorized ed., McGraw-Hill Education (Asia) Co. and Tsinghua University Press. 2006, pp.167-176.
Google Scholar
[14]
W. J. Wang, Z. B. Xu, W. Z. Lu, X. Y. Zhang: Determination of the spread parameter in the Gaussian kernel for classification and regression, Neurocomputing, Vol. 55 (2003), pp.643-663.
DOI: 10.1016/s0925-2312(02)00632-x
Google Scholar
[15]
C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, 1st ed., Cambridge: MIT Press, 2006, p.13.
Google Scholar
[16]
X. L. Li, Y. He, C. Q. Wu: Least square support vector machine analysis for the classification of paddy seeds by harvest year, Trans. Am. Soc. Agric. Biol. Eng., Vol. 51 (2008), pp.1793-1799.
DOI: 10.13031/2013.25294
Google Scholar
[17]
F. Javier Acevedo, Javier Jimea Nez, Saturnino Maldonado, Elena Domnguez, Araa Ntzazu Narvaa EZ: Classification of Wines Produced in Specific Regions by UV-Visible Spectroscopy Combined with Support Vector Machines, Journal of agricultural and food chemistry. Vol. 55 (2007).
DOI: 10.1021/jf070634q
Google Scholar
[18]
D. Wu, L. Feng, C. Zhang, Y. He: Early Detection of Botrytis Cinerea on Eggplant Leaves Based on Visible and Near-Infrared Spectroscopy, Transactions of the ASABE, Vol. 51 (2008), pp.1133-1139.
DOI: 10.13031/2013.24504
Google Scholar
[19]
Alessandra Borin, Marco Flores Ferrao, Cesar Mello, Danilo Althmann Maretto, Ronei Jesus Poppi: Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk, Analytica Chimica Acta, Vol. 579 (2006).
DOI: 10.1016/j.aca.2006.07.008
Google Scholar
[20]
F. Chauchard, R. Cogdill, S. Roussel, J.M. Roger, V. Bellon-Maurel: Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes, Chemom. Intell. Lab. Syst., Vol. 71 (2004).
DOI: 10.1016/j.chemolab.2004.01.003
Google Scholar