Fully Automated Mixed Mode Crack Propagation Analyses Using VCCM (Virtual Crack Closure-Integral Method) for Tetrahedral Finite Element

Article Preview

Abstract:

The authors have been developing a crack propagation analysis system that can deal with arbitrary shaped cracks in three-dimensional solids. The system is consisting of mesh generation software, a large-scale finite element analysis program and a fracture mechanics module. To evaluate the stress intensity factors, a Virtual Crack Closure-Integral Method (VCCM) for the second-order tetrahedral finite element is adopted and is included in the fracture mechanics module. The rate and direction of crack propagation are predicted using appropriate formulae based on the stress intensity factors.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 462-463)

Pages:

900-905

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.A. Richard, M. Sander, M. Fulland, and G. Kullmer: Engng. Fracture Mech. Vol. 75 (2008), p.331.

Google Scholar

[2] A. Ural, G. Heber, P.A. Wawrzynek, A.R. Ingreffea, D.G. Lewicki and B.C. Neto: Engng. Fracture Mech. Vol. 72 (2005), p.1148.

Google Scholar

[3] D.N. dell'Erba and M.H. Aliabadi: Int. J. Fatigue Vol. 22 (2000), p.261.

Google Scholar

[4] Information on Technostar, Co. Ltd: http: /www. e-technostar. com/english/index. html.

Google Scholar

[5] H. Okada, M. Higashi, M. Kikuchi, Y. Fukui and N. Kumazawa: Engng. Fracture Mech. Vol. 72 (2005), p.1717.

Google Scholar

[6] M. Kamaya: Engng. Fracture Mech. Vol. 75 (2008), p.1336.

Google Scholar

[7] N. Sukumar, B. Moran, T. Black and T. Belytschko: Comput. Mech. Vol. 20 (1997), p.170.

Google Scholar

[8] H. Okada, S. Endoh and M. Kikuchi: JSME Journal of Solid Mechanics and Materials Engineering Vol. 1 (2007), p.699.

Google Scholar

[9] T. Nagashima, Y. Omoto and S. Tani: Int. J. Nume. Meth. Engng. Vol. 56 (2003), p.1151.

Google Scholar

[10] N. Sukumar, D.L. Chopp and and B. Moran: Engng. Fracture Mech. Vol. 70 (2003), p.29.

Google Scholar

[11] K.N. Shivakumar, P.W. Tan and J.C. Newman: Int. J. Fracture Vol. 36 (1988), p. R43.

Google Scholar

[12] G.P. Nikishkov and S.N. Atluri: Int. J. Numer. Meth. Engng. Vol. 24 (1987), p.1801.

Google Scholar

[13] B. Moran and C.F. Shih: Engng. Fracture Mech. Vol. 27 (1987), p.615.

Google Scholar

[14] S.A. Fawaz: Engrg. Fract. Mech. Vol. 59 (1998), p.327.

Google Scholar

[15] H. Rajaram, S. Socrate and D.M. Parks: Engng. Fracture Mech. Vol. 66 (2000), p.455.

Google Scholar

[16] M. Nagai, T. Ikeda and N. Miyazaki: Engng. Fracture Mech. Vol. 74 (2007), p.2481.

Google Scholar

[17] H. Okada and T. Kamibeppu: Computer Modeling in Engineering & Sciences Vol. 10 (2005), p.229.

Google Scholar

[18] H. Okada, H. Kawai and K. Araki: Engng. Fracture Mech. Vol. 75, (2008), p.4466.

Google Scholar

[19] Information on Adventure Project Web Page: http: /adventure. sys. t. u-tokyo. ac. jp.

Google Scholar

[20] H.A. Richard, M. Fulland, F.G. Buchholz and M. Schöllmann: Steel Research Vol. 74 (2003), p.491.

Google Scholar

[21] Japan Welding Engineering Society, Progress report, Research on Fatigue Properties under Multi-Axial State of Stress-Phase 3, JWES-AE-0807. (2009).

Google Scholar