[1]
B Bullnheimer, R F Hartl, and C. C Strauss. A new rank-based version of the Ant System: computational study [J]. Central European Journal for Operations Research and Economics, 1999, 7(1): 25-38.
Google Scholar
[2]
T Stotzle, H Hoos. The MAX-MIN ant system and local search for the traveling salesman problem [C]. In: IEEE International Conference on Evolutionary Computation and Evolutionary Programming. Indianapolis, USA: IEEE Press, 1997. 309-314.
DOI: 10.1109/icec.1997.592327
Google Scholar
[3]
M. Dorigo, V. Maniezzo, and A Colorni. Positive feedback as a search strategy[R]. Politecnico di Milano, Italy, Technical Report: No. 91-016, (1991).
Google Scholar
[4]
M Dorigo. Optimiztion, Learning and Natural Algorithma [D]. Ph.D. thesis, Department of Electronics, Politecnico di Milano, IT, (1992).
Google Scholar
[5]
A Colorni, M Dorigo, V Maniezzo, et al. Distributed optimization by ant colonies [C]. In: Proceedings of the 1st European Conference on Artificial Life, 1991. 134-142.
Google Scholar
[6]
M Dorigo and LM Gambardella. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
DOI: 10.1109/4235.585892
Google Scholar
[7]
M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 1996, 26(1): 29-41.
DOI: 10.1109/3477.484436
Google Scholar
[8]
G. D. Caro, M. Dorigo. Extending AntNet for Best-Effort Quality-of-Service Routing. First International Workshop on Ant Colony Optimization(ANTS'98), October 15-16, (1998).
Google Scholar
[9]
G. D. Caro, M. Dorigo. Antnet: distributed stigmergetic control for communication netw-orks. Journal of Artificial Intelligence Research, 1998, (9): 317-365.
DOI: 10.1613/jair.530
Google Scholar
[10]
Cz Leguizamon, Z. Michalewicz. A new version of ant system for subset problems. Proceeding of the 1999 Congress on Evolutionary Computation, Washington, DC: USA, 1999: 1459-1464.
DOI: 10.1109/cec.1999.782655
Google Scholar
[11]
R. Parra-Hernandez, N. Dimopoulos. On the performance of the ant colony system for solving the multidimensional knapsack problem. IEEE Pacific Rim Conference on Communications. Computers and Signal Processing, Victoria, Canada, 2003: 338-341.
DOI: 10.1109/pacrim.2003.1235786
Google Scholar
[12]
L. Schoofs, B. Naudts. Ant colonies are good at solving constraint satisfaction problems. Proceeding of the2000 Congress on Evolutionary Computation, LaJoIIa, CA, USA, 2000: 1190-1195.
DOI: 10.1109/cec.2000.870784
Google Scholar
[13]
C. Solnon. Ants Can Solve Constraint Satisfaction Problems. IEEE Transactions on Ev-olutionary Computation, 2002, (6): 347-357.
DOI: 10.1109/tevc.2002.802449
Google Scholar